Search published articles


Showing 13 results for Calibration

A. Majnooni-Heris, Sh. Zand-Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 10, Issue 3 (10-2006)
Abstract

Agricultural investigations use computer models for simulation of crop growth and field water management. By using these models, the effects of plant growth parameters on crop yields are simulated, hence, the experimental costs are reduced. In this paper, the model of MSM (Maize Simulation Model) was calibrated and validated for the prediction of maize forage production at Agricultural College, Shiraz University in 1382 and 1383 by using maize forage yield under furrow irrigation with four irrigation and three nitrogen treatments. Irrigation treatments were I4, I3, I2, and I1, with the depth of water 20% greater than, equal to, 20% and 40% less than potential crop water requirements, respectively. Nitrogen treatments were N3, N2, and N1, with the application of N as urea equal to 300, 150, and 0 kg N ha-1, respectively. After calibration and validation of MSM, it was used to estimate suitable planting dates, forage yield and net requirement of water discharge for planting at different dates. The results indicated that the net requirement of water discharge was reduced by gradual planting at different planting dates. By considering different planting dates for maize, from Ordibehest 20th to Tir 10th, the planting area might be increased 17.9%, compared with single planting date on Ordibehesht 30th under a given farm water discharge and full irrigation.
R Rostamian, S.f Mousavi, M Heidarpour, M Afyuni, K Abaspour,
Volume 12, Issue 46 (1-2009)
Abstract

Soil erosion is an important economical, social and environmental problem requiring intensive watershed management for its control. In recent years, modeling has become a useful approach for assessing the impact of various erosion-reduction approaches. ِDue to limited hydrologic data in mountainous watersheds, watershed modeling is, however, subject to large uncertainties. In this study, SWAT2000 was applied to simulate runoff and sediment discharge in Beheshtabad watershed, a sub-basin of Northern Karun catchment in central Iran, with an area of 3860 km2. Model calibration and uncertainty analysis were performed with SUFI-2. Four indices were used to assess the goodness of calibration, viz., P-factor, d-factor, R2 and Nash-Sutcliffe (NS). Runoff data (1996-2004) of six hydrometery stations were used for calibration and validation of this watershed. The results of monthly calibration p-factor, d-factor, R2 and NS values for runoff at the watershed outlet were 0.61, 0.48, 0.85 and 0.75, respectively, and for the validation, these statistics were 0.53, 0.38, 0.85 and 0.57, respectively. The values for calibration of sediment concentration at the watershed outlet were 0.55, 0.41, 0.55 and 0.52, respectively, and for the validation, these statistics were 0.69, 0.29, 0.60 and 0.27, respectively. In general, SWAT simulated runoff much better than sediment. Weak simulation of runoff at some months of the year might be due to under-prediction of snowmelt in this mountainous watershed, model’s assumptions in frozen and saturated soil layers, and lack of sufficient data. Improper simulation of sediment load could be attributed to weak simulation of runoff, insufficient data and periodicity of sediment data.
R. Mohammadi Motlagh, N. Jalalkamali, A. Jalalkamali,
Volume 18, Issue 67 (6-2014)
Abstract

The main scope of this research is evaluation of Soil Conservation Service Procedure in derivation of initial abstraction of precipitation in watershed scale. For this purpose Dalaki watershed which is located in south east of Iran was selected then by using hec-hms and GIS models and a number of observed rainfall runoff events some parameters like CN of watershed ,K and X of Muskingam method and initial abstraction of precipitation were calibrated through two different search algorithm of univariate and Nelder & Mead methods. The early results of this research indicated the superiority of Univariate search algorithm over the Nelder&Mead method both in calibration and also validation processes. Then using calibrated CN and Initial abstraction parameters which were derived through Univariate search algorithm, the factor between initial abstraction and potential retention of surface runoff (S) in each of sub basins were estimated. 0.13, 0.43 and 0.19 were derived as the above mentioned factor respectively for Minimum, Maximum and mean of the above mentioned factor in this step of the research which showed an acceptable compatibility to the offered factor of 0.2 by SCS. Then in rainfall runoff modeling process of this watershed SCS offers a reliable method of initial abstraction estimation.
S. Dowlatabadi, S. M. A. Zomorodian,
Volume 19, Issue 71 (6-2015)
Abstract

One of the most essential and appropriate groundwater model components is accurate information of the recharge values among input data often introduced to the model as the percentage of rainfall of aquifers. The recharge values are influenced by many temporal and spatial factors. Firoozabad plain is one of the suitable plains for agriculture in the Fars province in which utilization of groundwater resources has been banned since 23 September 2002, due to the declining water level and negative balance. The main purpose of this study was to estimate the recharge values of groundwater aquifer by using SWAT in the MODFLOW model. Firstly, surface water was simulated via SWAT model, and sensitivity analysis, calibration, validation and uncertainty analysis of results were performed by SWAT-CUP software. After extraction of aquifer recharge values from the calibrated model, the groundwater of basin was simulated via MODFLOW model in both steady and unsteady conditions. Following the model calibration, the hydrodynamic coefficients of plain were determined and sensitivity of model was checked in terms of hydraulic conductivity and discharge rate of pumping wells. As for the confidence, the model was revalidated, which proved in simulating the behavior of the aquifer very well.


S. Azadi, S. Soltani Kopaei, M. Faramarzi, A. Soltani Tudeshki, S. Pourmanafi,
Volume 19, Issue 72 (8-2015)
Abstract

The Palmer Drought Severity Index (PDSI), which uses hydrometeorological variables to solve a simple water balance equation in the soil and considers the drought or wet conditions as dynamic phenomena, is used for the assessment of drought conditions in many parts of the world. The main goal of this study was to assess the PDSI based on its original assumptions, its regionalized status, using the outputs of already calibrated and validated SWAT model in central regions of Iran. The PDSI was assessed through five methods: 1) original Palmer Index without calibration in which the climate coefficients and the severity equation were derived for Kansas and central Iowa 2) original Palmer Index in which the coefficients of severity equations were adjusted 3) the Palmer Index with the calibration of equations in central areas of Iran 4) the Palmer Index using the soil moisture and potential evapotranspiration from SWAT model and 5) the Palmer Index using the soil moisture, potential evapotranspiration and runoff from SWAT model. The evaluation was conducted for 17 major basins covering the entire country with a monthly time step for the period 1990-2002. Then, using all five methods, the severity of the drought for 160 sub basins located in central Iran was calculated and evaluated. The results of this study indicated that method 4 provides more acceptable results. Also, the results of this research showed these methods clearly demonstrated (1992) as the wettest year and (2001) as the driest year. The approach used in this study is applicable to regional calibration of Palmer Index and the outputs of other hydrological models.


A. Sheikhzeinoddin, A. K. Esmaeili1 , M. Noshadi,
Volume 19, Issue 74 (1-2016)
Abstract

Chemical fertilizers have important role in modern agriculture, and in the other hand led to rigid environmental pollution. Urea fertilizer is one of the most widely used and least expensive nitrogen fertilizers in Iran. Since it is high solubility in water a significant of it, if irrigation or precipitation is heavy, easily washed and led to change to change the quality of groundwater, rivers or seas. Hence, in this study the effects of deficit irrigation and fertilization on pollution using SWAT for Tashk-Bakhtegan basin (land area between Dorudzan dam and Khan Bridge) were simulated. This model by comparing model outputs with actual observations of hydrological, crop yield (wheat, barely, corn and rice) and nitrate by using SUFI2 algorithm in SWAT_CUP software were calibrated and validated. Then the calibrated model used to evaluate different management strategies (e.g. irrigation and fertilizer amount). When the impacts of different levels of urea (0 to 70 percent reduction in urea application) were modeled, yield of these crops reduced between 1 to 27, 0.8 to 24, 0.42 to 21 and 0.47 to 9 percent for wheat, barely, corn and rice, respectively. However, these tends to decline nitrate leaching 16-81, 18-80, 15-85 and 12.5 to 83.6 percent, respectively for these crops.  Therefore, by comparing yield and nitrogen loss changes, this result can conclude that a significant reduction in nitrogen loss by minimum cost on yield can achieved by optimize fertilizer application. 


Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, M. Mahbod,
Volume 20, Issue 77 (11-2016)
Abstract

In agricultural development many factors such as weather conditions, soil, fertilizer, irrigation timing and amount are involved that are necessary to be considered by the plant growth simulation models. Therefore, in this study, the values of soil water content at different depths of soil profile, dry matter production and grain yield of winter wheat were simulated using AquaCrop and WSM models. The irrigation treatments were rain-fed, 0/5, 0/8, 1 and 1/2 times of full irrigation conducted in Agricultral College of Shiraz University during 2009-2010 and 2010-2011. The models were calibrated using measured data in the first year of experiment and validated by the second year data. The accuracy of soil water simulation was used to refer to the accuracy of simulated evapotranspiration. The accuracy of soil water content at different layers of root depth in the validation period was good for the WSM model (Normalized Root Mean Squer Error, NRMSE= 0/14). But the AquaCrop model showed less accuracy for soil water content (NRMSE=0/26). However, the values of predicted and measured crop evapotranspiration were close together at full irrigation treatment, the accuracy of AquaCop predictions was decreased with inceasing water stress. WSM model has had a good estimation of the dry matter and grain yield simulation with NRMSE of 0/15 and 0/18, respectively. However, they were simulated with less accuracy in the AquaCrop model with NRMSE of 0/19 and 0/39.


M. Iranpour Mobarakeh, M. Koch,
Volume 23, Issue 3 (12-2019)
Abstract

Deterioration of groundwater resources in coastal regions due to the progression of saline water in aquifers in these regions is currently one of the important issues in providing water needs in these areas. In coastal regions, saline water enters the aquifer from below in shape of wedge. Due to the difference in the density between fresh and salty water, an interface zone forms between two fluids. In order to better understanding the importance of this issue, experiments and numerical investigations of density-depended flow and transport through a tank filled with a variety of sand, are great help in achieving this. In this research, the real sand tank was simulated using SUTRA model. This simulation includes configuration, discretization, property assignment and boundary conditions determination. Finally, the transverse macro-dispersivity coefficient was estimated for different scenarios of the solute transport in this tank. The purpose of this research is to analyze of the solute dispersion, in mixing salt and fresh water, and the effect of seepage velocity, concentration of pollutant source and heterogeneity of porous media on the flow dispersivity property. In this research, after studying the effect of different boundary conditions in SUTRA model on the development of the salt water plume, simulation of the model of heterogeneous sand tank and comparing its results with laboratory model and homogeneous model were performed. As a practical result of this research, the diagram of changes in the coefficient of transverse dispersivity against the source concentration and seepage flow velocity was plotted. In numerical simulation of heterogeneous Porous media, for all concentrations, with the exception of the concentration C0= 35000, with increasing flow velocity, the values of the transverse dispersivity coefficient AT calculated by SUTRA decreased. Also AT for all seepage velocities, with the exception of seepage velocity u=4 m/day, increased with increasing source concentration. Also, the values obtained AT from the SUTRA model were more than the values of AT obtained from experiments. In numerical simulation of the homogeneous porous media, for all velocities, as the concentration source C0 increases, the transvers macro dispersivity coefficient AT increases. According to the applied results, suitable solutions can be found to improve the quality of groundwater and prevent the mixing of fresh and saltwater resources.

M. Iranpour Mobarakeh, M. Koch,
Volume 23, Issue 4 (2-2020)
Abstract

Nowadays, with the increasing population in Iran, especially in arid and semi-arid areas, as a result of the growing importance of the quality of water resources, including groundwater, field experiments and many simulations have been conducted for the development of groundwater contamination through powerful and up- to- date software. However, in most cases, there is a tangible difference between the measured data in laboratories and the data produced with software; this is why the scientific validation and verification of the research results could be declined. In this study, in order to justify and correct these data, the calibration principle was used to minimize the error of testing and modeling. The purpose of this study was to validate and verify the SUTRA model for different scenarios of the solute transport in a sand tank with heterogeneous hydraulic conductivity to evaluate transverse dispersivity. In this study, coding was initially performed for the configuration and calibration of the SUTRA numerical model to simulate different scenarios of the solute transport in a heterogeneous sand Tank in the Hydraulic Laboratory of the University of Kassel, Germany, until acceptable values were obtained. Then the results were compared with the experimental model. In order to validate and verify the data obtained from the simulation with the SUTRA model, the relevant concentration profiles were compared with the results of the experimental model. The results of the numerical and laboratory models revealed the density effects by sinking the geometric center of the mixing zone for the low concentrations of salt, C0 = 250 ppm. The results also showed that the width of the mixing zone between salt and fresh water depended on the amount of longitudinal dispersivity, especially the transverse dispersivity. By analyzing the results of simulation and experiment, it was observed that with increasing the velocity, reducing the amount of sinking and raising the input concentration, the time needed to achieve the steady dispersion was decreased.

Sh. Zand-Parsa, F. Ghasemi Saadat Abadi, M. Mahbod, A. R. Sepaskhah,
Volume 24, Issue 2 (7-2020)
Abstract

Due to the limited water resources and growing population, food security and environmental protection have become a global problem. Increasing water productivity of agricultural products is one of the main solutions to cope with the difficulties. By optimizing applied water and nitrogen fertilizer, the pollution of groundwater could be deceased and the water productivity could be increased. The aim of this research was to determine the relationships between water productivity (IRWP) and water use efficiency (WUE) and different amounts of applied water (irrigation + rain fed) and nitrogen (applied and residual). This study was conducted on wheat (Triticum aestivum L., cv. Shiraz) in Shiraz University School of Agriculture, based on a split-plot design with three replications, in 2009-2010 and 2010-2011 periods. Irrigation treatments varied from zero to 120% of full irrigation depth, and nitrogen fertilizer treatments varied from zero to 138 kg ha-1 under basin irrigation system. The experimental data of the first and second years were used for the calibration and validation of the proposed relationships, respectively. The calibrated equations using the dimensionless ratios of irrigation depth plus rainfall, actual evapotranspiration and nitrogen fertilizer plus soil residual nitrogen to their amounts in full irrigation and maximum fertilizer amounts were appropriate for the estimation of water productivity and water use efficiency. The values of the determination coefficient (R2) for water productivity and water use efficiency (0.88 and 0.93, respectively), and the values of their normalized root mean square error (NRMSE) (0.2 and 0.13, respectively) showed a good accuracy for the estimation of IRWP and WUE.

F.z. Asadi, R. Fazloula, A. Emadi,
Volume 25, Issue 3 (12-2021)
Abstract

Investigating and understanding river change issues is one of the important factors in sediment hydraulic sciences and river engineering. These studies can be done with the help of physical, mathematical models, or both, but due to financial and time constraints, mathematical models are more general and often used. In this study, the GSTARS model was used to investigate erosion and sedimentation and select the most appropriate function in 12.5 km in length from the Talar river in Mazandaran Province. Simulation using the 55 sections taken in 2006, the daily flow data of the hydrometric station of the Shirgah, located at the beginning of the rich and characteristics of the river sediment, was done. The calibration and validation of the model with cross sections taken in 2012 showed that Yang's sediment transport equation has the highest correlation with reality and can be used to predict river change. The amount of sediment depleted from the case study using the Yang equation is estimated at 8590 tons per year. Also, the study of longitudinal profiles of the river with different sediment transfer functions showed that the study reach at the end range has an erosion trend and is not capable of sand and gravel mining.

M. Abedinzadeh, A. Bakhshandeh, Mr B. Andarziyan, Mr S. Jafari, M Moradi Telavat,
Volume 25, Issue 3 (12-2021)
Abstract

Iran is located in the dry belt of the earth and is predicted to face water stress in the next half-century. Currently, the area of sugarcane cultivation in Khuzestan is over 85,000 hectares and due to the high water needs of sugarcane and drought conditions, optimization of water consumption and irrigation management is necessary to continue production. Therefore, in this study, the values of soil moisture, canopy cover, biomass yield in five treatments and irrigation levels (start of irrigation at 40%, 50%, 60%, 70%, and 80% soil moisture discharge) during 2 planting dates in the crop year 2015-2016 on sugarcane cultivar CP69-1062 in Amirkabir sugarcane cultivation and industry located in the south of Khuzestan was simulated by AquaCrop model. The measured data on the first culture date (D1) and the second culture date (D2) were used to calibrate and validate the model.  The results of NRMSE statistics in canopy cover simulation in calibration and validation sets with values of 2.1 to 15.6% and 3.8 to 18.3%, respectively, and in biomass simulation with values of 6.2 to 15.2%, and 9.5 to 12.6%, respectively and coefficient of determination (R2), range 0.98 to 0.99 indicated that the high ability of the AquaCrop model in simulation canopy cover and biomass yield. whereas, the values of NRMSE of soil depth moisture in the calibration and validation sets ranged from 11.6 to 23.8, and 12.2 to 22.7, respectively, with a coefficient of determination (R2), 0.73 to 0.96 (calibration) 0.8 to 0.93 (validation) showed less accuracy of the model in the simulation. The best scenario is related to the third proposal that water consumption, water use efficiency, and yield are 1710 mm, 1.53, and 42.27 tons per hectare, respectively, which shows a reduction in water consumption of 360 mm.

A. Mahdavi, S. Soltani Koopaei, R. Modares, M. Samiei,
Volume 27, Issue 4 (12-2023)
Abstract

Land use changes are one of the main factors in the amount of surface runoff changes in watersheds. Therefore, it is necessary to investigate it to reduce the damages (human and financial) caused by floods and to modify watershed management. The watershed of Nahre Azam is located in the north of Shiraz city and a lot of loss of life and money to the residents of Shiraz due to floods has occurred in previous years. The present research was conducted to investigate the relationship between land use change and runoff in the Nahre Azam watershed in Shiraz using the SWAT model in the period of 2004-2020. The model was calibrated using data from 2004 to 2014 and validated for 2015 to 2020. These images were classified into 6 main land uses using the supervised classification method after performing necessary pre-processing, and a land use map was prepared for 2040 using the Markov chain method. Then, the effect of the land use change in 2003 and 2040 on the amount of simulated runoff was evaluated with the recalibrated model. The calibration results of Nahre Azam watershed for the values of statistical parameters in the calibration step for the coefficient of determination, P-Facor and R-Facor are 0.77, 0.72, and 2.43, respectively, and for the validation step we obtained 0.69, 0.65, and 2.3 respectively. The analysis of the land use map showed that the main land use change in the region related to the conversion of pastures to agricultural land and urban land, which caused a decrease in pastures. Also, the results of the model simulation using the land use maps of 2003 and 2040 indicated that the amount of runoff decreased. The results revealed that if all the uncertainties are minimized, the calibrated SWAT model can produce acceptable hydrological simulation results for the user, which is useful for water resource and environmental managers and politicians as well as city managers of Shiraz.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb