Showing 2 results for Calibration.
R Rostamian, S.f Mousavi, M Heidarpour, M Afyuni, K Abaspour,
Volume 12, Issue 46 (1-2009)
Abstract
Soil erosion is an important economical, social and environmental problem requiring intensive watershed management for its control. In recent years, modeling has become a useful approach for assessing the impact of various erosion-reduction approaches. ِDue to limited hydrologic data in mountainous watersheds, watershed modeling is, however, subject to large uncertainties. In this study, SWAT2000 was applied to simulate runoff and sediment discharge in Beheshtabad watershed, a sub-basin of Northern Karun catchment in central Iran, with an area of 3860 km2. Model calibration and uncertainty analysis were performed with SUFI-2. Four indices were used to assess the goodness of calibration, viz., P-factor, d-factor, R2 and Nash-Sutcliffe (NS). Runoff data (1996-2004) of six hydrometery stations were used for calibration and validation of this watershed. The results of monthly calibration p-factor, d-factor, R2 and NS values for runoff at the watershed outlet were 0.61, 0.48, 0.85 and 0.75, respectively, and for the validation, these statistics were 0.53, 0.38, 0.85 and 0.57, respectively. The values for calibration of sediment concentration at the watershed outlet were 0.55, 0.41, 0.55 and 0.52, respectively, and for the validation, these statistics were 0.69, 0.29, 0.60 and 0.27, respectively. In general, SWAT simulated runoff much better than sediment. Weak simulation of runoff at some months of the year might be due to under-prediction of snowmelt in this mountainous watershed, model’s assumptions in frozen and saturated soil layers, and lack of sufficient data. Improper simulation of sediment load could be attributed to weak simulation of runoff, insufficient data and periodicity of sediment data.
Sh. Zand-Parsa, F. Ghasemi Saadat Abadi, M. Mahbod, A. R. Sepaskhah,
Volume 24, Issue 2 (7-2020)
Abstract
Due to the limited water resources and growing population, food security and environmental protection have become a global problem. Increasing water productivity of agricultural products is one of the main solutions to cope with the difficulties. By optimizing applied water and nitrogen fertilizer, the pollution of groundwater could be deceased and the water productivity could be increased. The aim of this research was to determine the relationships between water productivity (IRWP) and water use efficiency (WUE) and different amounts of applied water (irrigation + rain fed) and nitrogen (applied and residual). This study was conducted on wheat (Triticum aestivum L., cv. Shiraz) in Shiraz University School of Agriculture, based on a split-plot design with three replications, in 2009-2010 and 2010-2011 periods. Irrigation treatments varied from zero to 120% of full irrigation depth, and nitrogen fertilizer treatments varied from zero to 138 kg ha-1 under basin irrigation system. The experimental data of the first and second years were used for the calibration and validation of the proposed relationships, respectively. The calibrated equations using the dimensionless ratios of irrigation depth plus rainfall, actual evapotranspiration and nitrogen fertilizer plus soil residual nitrogen to their amounts in full irrigation and maximum fertilizer amounts were appropriate for the estimation of water productivity and water use efficiency. The values of the determination coefficient (R2) for water productivity and water use efficiency (0.88 and 0.93, respectively), and the values of their normalized root mean square error (NRMSE) (0.2 and 0.13, respectively) showed a good accuracy for the estimation of IRWP and WUE.