Search published articles


Showing 3 results for Caspian Sea

S. M. J. Nazemosadat, A. Shirvani,
Volume 8, Issue 1 (4-2004)
Abstract

In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of winter rainfall according to the states of ENSO events. The time series of (southern oscilation index (SOI) and SST (sea surface temperature) over Nino's area (Nino's SST) are used as the predictors, and precipitation in Bandar Anzali and Noushahr are used as the predictands. Emperical orthogonal functions (EOF) were applied for reducing the number of original predictors variables to fewer presumably essential orthogonal variables. Four modes of variations (EOF1, EOF2, EOF3, EOF4) which account for about 92% of total variance in predictors field were retained and the others were considered as noise. Based on the retained EOFs and precipitation time series, the canonical correlation analysis (CCA) was carried out to predict winter precipitation in Noushahr and Bandar Anzali. The results indicated that the predictors considered account for about 45% of total variance in the rainfall time series. The correlation coefficents between the simulated and observed time series were significant at 5% significant level. For 70% of events the anomalies of observed and simulated values have the same sign indicating the ability of the model for reasonable prediction of above or below normal values of precipitation. For rainfall prediction, the role of Nino's SST (Nino4 in particular) was found to be around 10% more influential than SOI. .
S. M. J. Nazemosadat, A. R. Ghasemi,
Volume 8, Issue 4 (1-2005)
Abstract

The influence of the Sea Surface Temperatures (SSTs) on the seasonal precipitation over northern and southwestern parts of Iran was investigated. The warm, cold and base phases of the SSTs were defined and the median of precipitation during each of these phases (Rw, Rc and Rb, respectively) was determined. The magnitude of Rw/Rb, Rc/Rb and Rc/Rw were used as criteria for the assessment of the effects of the alternation of SST phases on seasonal precipitation. The results indicate that in association with cold SST phase, winter rainfall is above median over western and central parts of the coastal region, central and southern parts of Fars Province and all the stations studied in Khozestan Province. On the other hand, the prevalence of warm SST phase has caused about 20% decrease in winter precipitation over the Caspian Sea coastal area and northern parts of both Fars and Khozestan provinces. In association with warm SST phase in winter, precipitation during the following spring was found to be above normal for all the stations studied in the coastal region of the Caspian Sea. The highest sensitivity levels were found in Bandar- Anzali and Astara for which spring precipitation has increased by 80% due to the dominance of warm winter phase. However, the occurrence of boreal cold SST events causes shortage of precipitation in the eastern parts of the coastal areas along the Caspian Sea. A Possible Physical mechanisem justifying the influence of the Caspian Sea SST on the Precipitation variability was introduced. According to this mechanisem, temporal and spatial variability of the Siberian High is forced by the fluctuations in these SSTs.
S. Chavoshi,
Volume 22, Issue 4 (3-2019)
Abstract

Regional flood frequency studies are initialized by the delineation of the homogeneous catchments. This study was based on "Region of Influence" concept, aiming to find the similar catchments in the south of Caspian Sea. The methodology utilized the Particle Swarm Optimization Algorithm, PSO, to optimize the fuzzy system over a dataset of catchment properties. The main catchment variables in relation to flood were determined by the principle component analysis method and employed as the inputs in the fuzzy system. Catchments grouping was performed over these fuzzy input variables by the iterative process. The optimum similar groups were obtained by PSO, and the heterogeneous L-moment index was used as the termination criterion for the optimization process. A total of 61 hydrometric stations located in the study area were selected and their relevant catchments' physical, climatic and hydrologic properties in relation to flood were studied. Principle Component Analysis by Variomax Rotation Factor over the catchments datasets tended to four out of 16 physical variables, including area, mean elevation, Gravelious Factor and Form Factor, as the main parameters in terms of homogeneity with 84 percent of accumulative variance. These variables, as well as mean annual rainfall, were used as the input data to define the fuzzy system. PSO algorithm was then employed to optimize the developed fuzzy system. The developed algorithm tended to yield the best result in the 9th iteration with 26 and 22 for the minimum average and the optimum values of cost function, respectively. The topology of the resulting algorithm included inertia weight, local and acceleration rates, the number of generations and population size, with the values of 0.7298, 1.4962, 1.4962, 10 and 5, respectively. This study tended to a total of 61 regions of influence, proportional to the relevant 61 sites. According to the geographical location of the catchments in the region, it could be concluded that the geographical proximity doesn't necessarily involve homogeneity. The obtained results indicated the efficient potential of PSO-FES in the delineation of the homogenous catchments in the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb