Search published articles


Showing 9 results for Cement

H. Afzalimehr, M. Heidarpour, S. H. Farshi,
Volume 7, Issue 1 (4-2003)
Abstract

In this study, two data ranges of uniform flow (bulk parameters) and non-uniform flow (local parameters) are employed to investigate resistance to flow and the factors affecting it using velocity distribution of boundary layer theory. The results indicate that the cross-section form factor or adjustment roughness coefficient of logarithmic law can not improve the prediction of flow resistance. On the other hand, it is possible to ameliorate the prediction of resistance to flow by application of the Froude number and the Shields parameter along with the integration constant of the logarithmic velocity distribution. Also, there is no improvement in flow resistance prediction by taking into account power equations. On the other hand, the application of boundary-layer characteristics such as displacement thickness and momentum thickness in velocity profile can remove the risk of spurious correlation. Based on the measured velocity profiles for non-uniform flow in Gamasiab river, a new flow resistance equation is suggested in which the following bulk parameters are considered: flow depth, maximal velocity at the water surface, and friction slope.
S. Maghsoud Lou, A. Golian, F. Eftekhar Shahroudi, M. Nassiri Mahallati, H. Kermanshahi,
Volume 7, Issue 3 (10-2003)
Abstract

An experiment with a 33 factorial arrangement in a completely randomized design with 450 day-old broilers was conducted to study the effect of energy level and time of change from starter to finisher diets on performance and economic aspects of broilers. Broiler chickens were fed at three levels of dietary energy (2800, 3000, and 3200 KcalME/Kg) from 1-42 days of age. Starter and finisher diets were changed at 16, 21, and 26 days of age and then finisher diets were fed up to 42 days of age. The effect of diet energy and changing time from starter to finisher diets on body weight and feed conversion at 26 days of age were significant (P<0.01). By increasing energy level and changing time from starter to finisher diets, at this age, body weight increased and feed conversion ratio decreased. Energy conversion decreased by decreasing the levels of energy content of diet and increasing time of change from starter to finisher diets (P<0.01). At 42 days of age, the effects of diet energy and changing time from starter to finisher diets did not show any significant effects on feed and energy conversion in contrast, body weight at this age increased significantly as a result of increasing time of change from starter to finisher diets (P<0.05). From 1-42 days of age, the interaction between diet energy and changing time from starter to finisher diets on feed and energy conversion was significant (P<0.05). The results from this study suggest that increasing diet energy and changing time from starter to finisher diets for producing broilers with less than 2 kg will improve their general performance.
Malihe Keykhee, M Heydarpor, Farhad Mosavi,
Volume 13, Issue 49 (10-2009)
Abstract

Ripraps are placed around bridge piers to prevent scour and secure the piers from failure. Proper riprap cover is essential to be economical. The present study examines using of riprap for reduction of local scour in piers group and the results are compared with data from riprap on a single pier. The models consist of two and three circular-shaped piers in line with the flow, with the diameter of 0.02 m and pier spacing of twice and four times the pier diameter. Four uniform riprap sizes with the diameters of 2.86, 3.67, 4.38 and 5.18 mm were used to cover the piers. The results showed that the effect of wake vortices formed at the downstream side of piers group was decreased as compared with single pier. The reinforcing and sheltering effects caused 31% decrease in front pier and 60% increase in back pier, respectively, for the length of cover riprap. The reinforcing and sheltering effects were decreased by increasing pier spacing, but the riprap pattern was not affected. In triple piers group, scour depth in the second pier was less than the first pier and in the third pier was less than the first and second piers. In double and triple piers group, the sheltering effect reduced the scour depth (46% and 54%, respectively) in the back pier with respect to the single pier. Reduction of dimensions in scour hole of back pier in triple piers group was 67% with respect to double piers group, which is the result of sheltering effect of first and second piers. The best shape for the riprap was semi-oval. The riprap length in double and triple piers group was reduced by 31% and 37.5%, respectively, as compared with the single pier.
L Omidi, H Dashti, V Mozaffari, A Tajabadipour,
Volume 14, Issue 52 (7-2010)
Abstract

This study was carried out to evaluate the application of zinc and copper sulfate by different methods such as foliar application and deep-placement and time of application on the some quantitative and qualitative properties of pistachio trees. For this purpose, a complete randomized block design experiment with 12 fertilizer treatments and 3 replications at 2 consecutive years was conducted in the experimental garden of Rafsanjan. Treatments included deep-placement of medium amounts (54.2 and 11.1 kg/ha of elemental Zn and of Cu respectively) and high amounts (81.3 and 16.7 kg/ha of Zn and of Cu respectively), foliar application of 0.15 kg/ha elemental Cu in the form of Cu sulfate and 1.8 kg/ha of the elemental Zn in the form of Zn sulfate (34%) at the rate of 1000 liter water on Esfand (late dormant), Farvardin (after flowering) and Mehr (post harvest) . Results indicated that in first year, the maximum yield was obtained with foliar application of Cu on Esfand. Also, qualitative properties such as Split/non split ratio significantly increased by above treatment. The protein content increased with foliar application of Cu on Esfand and Zn on Farvardin by 22 and 16.5%, respectively compared to the control. The analysis of leaf samples, demonstrated that the foliar spray of Cu+Zn on Esfand increased Zn leaf by 119% as compared with control. In second year, yield increased by the foliar application of Zn on Esfand. Also, qualitative properties such as the number of seeds per ounce significantly increased by foliar application of Cu on Mehr. The highest and the lowest rate of split/non-split ratios were observed in treatments of high and low localized placement. The protein content decreased in the treatment of high deep placement as compared to the control. Foliar spray of Zn on Esfand caused the highest increase of leaf Zn concentration and foliar spray of Cu and Zn+Cu in Mehr increased significantly Cu leaf. The results indicated that the effects of treatments on oil content and stem nutrients concentration were not significant on two years. Due to saline and lime effects in the soil in pistachio orchards, soil application of micronutrients had no significant on the the yield.
K. Enayati, M.j. Rousta, A. Vakili,
Volume 15, Issue 56 (7-2011)
Abstract

Soil structure and aggregate stability affect soil erodibility. There is a necessity for increasing aggregate stability against erosive factors such as wind and water. This study was conducted on surface soil samples (0-20cm) collected from agricultural land susceptible to erosion located in Chahoo, southeast of Fars province. The experimental design was CRD with 10 treatments and was replicated 3 times as follows: control plot (without addition of soil amendments), pure gypsum, chopped wheat straw, farm yard manure, gypsum+wheat straw, gypsum+ farm yard manure (1% w/w), cement at levels (0.3% w/w), (0.6% w/w), (0.9% w/w), gypsum +cement (0.9% w/w). After one, four and seven months, the amounts of soil aggregates in 53-4000 µm sizes were determined by wet sieving and MWD was calculated. The results of aggregate size distribution in every stage of the experiment showed that application of farm yard manure and wheat straw separately or in combination with gypsum through reduction in aggregates with diameters of <106 µm has caused an increase in aggregates with diameter of >106 µm. Based on the results of this research, the effect of these treatments, which increased MWD of the aggregate, results from the amount of aggregates with diameters larger than 1000 µm. According to the results of this study, it is suggested that these treatments be considered suitable to increase the stability of sensitive silt loam soils.
M. Sarmast, M. H. Farpoor, M. Sarcheshmehpoor, M. Karimian Eghbal,
Volume 18, Issue 68 (9-2014)
Abstract

Biocalcite infilling and bridging in a sandy soil was studied in the present research. Effects of 2 bacterial species (Sporosarcina pasteurii and Sporosarcina ureae), 3 reactant concentrations (0.5, 1.0, and 1.5 M of urea and CaCl2 mixture), and 6 reaction times (12, 24, 48, 96, 192, and 288 hr) on saturated hydraulic conductivity and mechanical strength of a sandy soil were studied as a factorial experiment. Soil samples were selected from sand dunes of Joopar area, Kerman Province. Bacterial inoculums and reactant solutions were daily added to soil columns. Results of the study showed that S. pasteuriihad had a higher effect on decreasing hydraulic conductivity of the treated samples (11.57 cm/h) compared to the blank (41.61 cm/h) than S. ureae. Increasing reaction times (from 12 to 288 hrs) and reactant concentrations (from 0.5 to 1.5 M) decreased hydraulic conductivity by 49 and 16 %, respectively. S. pasteurii increased strength of treated samples up to 2.6 Mpa pressure compared to S. ureae. Reactant concentrations and reaction times increased soil strength significantly (2.13 and 4.1 Mpa, respectively). Micromorphological observation showed calcite crystals bridging soil particles and filling pore spaces.
A. Hosseini, M. Shafai- Bajestan,
Volume 20, Issue 75 (5-2016)
Abstract

Assessing the root system and its tensile strength is necessary for determine the impact of roots in increasing the soil shear strength. The present study aims to investigate effects of slope and flow of riverbank on root system of riparian POPULOYS trees. In a relatively direct interval, 6 riparian POPULOYS trees were chosen on the slope of Simereh riverbank. To assess the root system, the circular profiles trenching method was utilized. The surface around each tree was divided into four quadrants: upper quadrant, lower quadrant, in slope direction and in flow direction. In every quadrant, number and diameter of roots were measured. The obtained results showed that the highest number of roots were in 90-100 cm depth. 59% of Roots, in the slop direction and 53% of roots in flow direction, were located in the top quadrant. Approximately, 97% of roots had up to 20 mm diameter. The greatest difference in the number of roots in upper, lower, in slop direction and in flow direction quadrants, were seen in diameters up to 5 mm. In slope direction, this difference was almost 2.7 times more than the difference seen in flow direction. The average ratio of root cross-section was 0.26%. The obtained results indicate that the root system of riparian POPULOYS trees on the riverbank is asymmetrical.


K. Esmaili, S. Seifi, H. Salari,
Volume 22, Issue 3 (11-2018)
Abstract

Settling basins are one of the most essential structures for the separation of inflow sediments. This structure is established to enhance the water quality after the river-basins and water channels. Numerous studies have been conducted on the design of this structure and different methods have been provided to increase its efficiency. However, the use of simple settling basins with the minimum cost which can provide the ideal targets has been the focus of designers. In this study, the effect of flow-guiding plates and the angle between these and the inflow, and the impact of water depth in the basin on the trap efficiency of the settling basins were considered. For testing, 4 blades with specific length and angle were installed. This experiment was repeated for 3 different lengths and 3 angles. The results of the experiments showed that with the enhancement of the depth of water to 10 centimeters to 30 centimeters, while the basin had no flow-guiding plates, increased the trap efficiency of the basin by 4.9 percent. Also, by the use of flow-guiding plates in the suitable and best length and angle (in this study, the suitable size of blades was 22.5 centimeters and the best position was by the angle of 30 degrees); with the maximum of the water depth of 30 centimeters, the trap efficiency was increased by 13.3 percent. The sensitivity analysis done showed that the depth of water had the most effect on the trap efficiency of the basin and the changes in the lengths and angles of the blades position had the similar effects of the basin trap efficiency.

M. Maleki-Kakelar, M. Yavari,
Volume 24, Issue 1 (5-2020)
Abstract

Biocementation through microbial induced carbonate precipitation (MICP) is a recently developed new branch in geotechnical engineering that improves the mechanical properties of bio-treated soils. The potential application of MICP to handle problems such as liquefaction and erosion has been established; this technique offers an environmentally friendly, cost-effective and convenient alternative to traditional soil improvement approaches. Nevertheless, in spite of the widespread demonstration of the process at laboratory scale, few field and practical applications have been implemented to assess the efficiency of the biochemical process. Therefore, this paper presents a review of the utilization of MICP for soil improvement and discusses the treatment process including the key constituents involved and the main affecting factors, especially in field scale applications. The major contribution of this research is to identify the main parameters restricting the application of this method on site. Finally, technical and commercial progress in the industrial adoption of the technology and the main challenges that are ahead for the future research prior to real practical application are briefly discussed.
 
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb