Search published articles


Showing 10 results for Chemical Properties

S. Ayoobi, A. Jalalian, M. Karimian Eghbal,
Volume 7, Issue 3 (10-2003)
Abstract

Investigation of paleosols plays a great role in paleoecological and paleoclimatological studies. They are also important in soil survey and planning, as they exhibit characteristics different from younger soils. Paleosols are those soils which formed under conditions different from present ones, and are either buried within sedimentary sequences or those which lie on persisting surfaces. Although such soils are widespread in central Iran and Zagros Zone, they have not been studied adequately. Paleosols are identified by different parameters such as morphological, physical, chemical, mineralogical, and micromorphological characteristics. In this study, morphological, physical, and chemical properties of three paleosols from Isfahan and Chaharmahal & Bakhtiary provinces were investigated. The profiles were on different landforms including alluvial fan, dissected old plain, and old lagoonal deposits. Soil profile in Segzi site, on old lagoonal deposits, had a very dark and thick layer at a depth of 45-60 cm containing some macrofossil shells. This shows that this area was covered by brackish water during the early Holocene. In Sepahanshahr profile, presence of strong clay coating and high concentrations of CaCO3 indicates a wetter environment in the past than the present conditions with a precipitation of only 100 mm. In Emam-Gheis profile, a buried paleosol was identified with strong clay coating and free CaCO3 horizons that shows more humid conditions. Evidences obtained from the three paleosols studied indicate that effective moisture in central Iran and Zagros regions during Late Pleistocene had been higher than its present levels.
M. R.edalatian, S. A. Mortazavi, M. Hamedi, M. Mazaheri,
Volume 9, Issue 4 (1-2006)
Abstract

Production and consumption of whole tomato and/or its products(tomato paste, tomato juice, ketchup, etc) is incearsed all over the world. Annual production of tomato in Iran is about 3.4 million tons (MT), part of that is processed in the tomato paste factorise, which are mostly located in khorasan province. Since tomato variety has a determinant effect on the physico-chemical and organo leptical properties/quality of tomato and its products, an investigation was performed to evaluate the impact of variety and storage time of four tomato varieties, Cal.j.n.3, Early Urbana Y, Early Urbana 111and Peto early C.H which were selected according to a national project and were monitored according to their brix, pH, Acidity, Sugar and Salt contents, total and non soluble solids. Results indicated that Early Urbana 111 and Peto early C.H contained the highest amounts of soluble solids along with the highest pH. Also it was evidenced that these varieties were the most stable varieties as the least compositional changes was seen in them.
M Kadivar, N Aghajani, H Hosini, M Kashni Nejad,
Volume 13, Issue 48 (7-2009)
Abstract

Since malting process of barley is greatly affected by the seed endosperm structure, getting information about its anatomical characteristics along with physico-chemical properties would be very important. The aim of this study was to measure length, width, thickness, kernel density, bulk density, porosity, total nitrogen, reducing sugar, diastatic activity, pH and color changes during malting process. Results showed that width, thickness, reducing sugar and diastatic activity of the samples increased over the malting time, whereas kernel density, bulk density and total nitrogen decreased (P<0/05). Scanning electron microscopic examination of barley endosperm revealed a significant relationship between grain total nitrogen and degree of endosperm modification. Because of lower nitrogen content in Sahra malt, more digestion of cell walls and protein matrix of endosperm walls were observed.
Z. Ahmad Abadi, M. Ghajar Sepanlou, S. Rahimi Alashti,
Volume 15, Issue 58 (3-2012)
Abstract

In order to investigate the effect of vermicompost on physical and chemical properties of soil, an experiment was carried out in split plot based on complete randomized block design in three replications in Sari Agricultural Sciences and Natural Resources University. The physical and chemical properties of soil included bulk density, particle density, total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, pH, organic carbon and electrical conductivity in soil. Six levels of fertilizer treatments (T1= control, T2= chemical fertilizer, T3= 20 tons vermicompost + 1/2 T2, T4 = 20 tons / hac vermicompost + 1/2 T2 , T5= 40 tons vermicompost + 1/2 T2 and T6= 40 tons / hac vermicompost) and three levels of application years, one year of fertilization (1385), two consecutive years of fertilization (1385 and 1386) and three consecutive years of fertilization (1385, 1386, 1387). The results of the study showed that the application of these treatments in soil were significantly effective in increasing the total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, organic carbon electrical conductivity and in decreasing the bulk density, particle density and pH compared to control. In Contrast years of consumption of fertilizer did not have any significant effect on the physical properties of the soil except for FC, PWP, AWC, pH, OC and EC. The interaction between years of consumption of fertilizers were significantly different only in particle density and field capacity.
N. Nourmahnad, H. Tabatabaei, A. R. Hoshmand, M. R. Nouri Emamzadei, Sh. Ghorbani Dashtaki,
Volume 18, Issue 68 (9-2014)
Abstract

Usually, dry soil readily absorbs water .However, not all soils display such characteristics. Some soils (hydrophobic soils) show resistance to wetting. Because of the importance of this subject and lack of research, we evaluated the effect of heating on water repellency and some of soil physical and chemical characteristics. So soil was combined with compost and heated at deferent temperatures, 100, 200, 300, 400 and 500 °C for 30 minutes in an oven or muffle furnace. The results showed that control treatment and heated soil at 300 °C had WDPT and MED 45 (s), 17% and 80 (s), 23% respectively. So, little water repellency was present prior to heating the soil. When soil was heated up to 300°C, intense water repellency resulted, but it was abruptly eliminated by increasing the heating. The soil texture was changed from loam to sandy loam at high temperatures (400 & 500 °C) and the sand percentage was increased. Organic matter decreased by increasing the temperature. Amount of pH decreased up to 200 °C and then increased at 500°C because of increasing ash in soils. Diminution of mineral and organic matter caused EC to decline in all the heated soils.
V. Moradinasab, M. Shirvani, M. Shamsaee, M. R. Babaee,
Volume 19, Issue 74 (1-2016)
Abstract

Mobarakeh Steel Complex has been using treated industrial wastewater for irrigation of green space to combat water shortage and prevent environmental pollution. This study was performed to assess the impact of short-, middle-, and long-term wastewater irrigation on soil quality attributes in green space of this complex. Soils were sampled from the wet bulb produced by under-tree trickles in three depths of forested lands irrigated with treated wastewater (for 2, 6 and 18 years) or groundwater. Several chemical, physical and biological characteristics of the soil samples were determined in the laboratory and compared to those of the native unirrigated soils as the controls. The results showed that pH was significantly reduced in the wastewater-irrigated soils as compared to the control. Organic matter content and cation exchange capacity significantly increased in the irrigated soils due to the incorporation of tree leaves into soil. Soil salinity also increased as the irrigation period increased because of the relatively high salinity of water and wastewater used for irrigation. Microbial basal respiration and arginine ammonification were greater in the irrigated soils in comparison to the control. In general, forestation and irrigation management have improved most of the soil quality indexes in the Mobarakeh Steel Complex green space, but some soil characteristics, such as salinity, need to be monitored and improved in future.


F. Jafari , H. Khademi,
Volume 21, Issue 1 (6-2017)
Abstract

Dust deposition phenomenon is an important climatic and environmental issue in arid and semi-arid regions. The objective of this study was to examine important characteristics of atmospheric dust in Kerman as one of the major cities in arid areas of our country with high potential of dust production. Dust samples were collected monthly using glass traps installed on the roof of 35 one-story buildings in Kerman for 7 months from April 20 to Nov. 20, 2012. To compare the results of atmospheric dust with those of soil, 60 surface soil samples (0-10 cm) from outside Kerman and 35 soil samples from urban areas were also collected. Some physical and chemical characteristics such as pH, electrical conductivity, organic matter, calcium carbonate equivalent, and  particle size distribution were determined in dust and soil samples. The results of chemical analyses indicated that the amount of these properties is much higher than that in soils. Atmosphere dust particles appear to mainly originate from alkaline and saline soils surrounding the city of Kerman. Dust particle size distribution analysis further confirmed that dust particles have been transferred to Kerman city from medium to long distance areas.  Temporal variability in dust chemical properties indicates that the contribution of anthropogenic and natural sources to urban dust in Kerman has seasonal changes. Based on the results obtained, it is necessary to control dust production outside and inside the city and its distribution in populated areas employing proper management practices.


F. Jalilian, B. Behmanesh, M. Mohammad Esmaeili, P. Gholami,
Volume 21, Issue 2 (8-2017)
Abstract

In this study, different indices of vegetation cover variations and different physicochemical properties of soil in three treatments of flood spreading, enclosure and grazing (control) were investigated and compared in in the region of Peshert in Mazandaran province. In order to measure different soil characteristics, 18 soil samples (six withdrawals at any treatment) from a depth of zero to 30 cm were taken from the desired treatments. In order to investigate different vegetation indices, a total of 90 plots (nine transects of 100 m) were run using systematic random sampling in the studied treatments and the necessary measurements were done (30 plots at any treatment). Then, in each of these plots, canopy coverage percentage was determined separately for each species and to evaluate and assess the diversity and richness in all three treatments, Shannon-Wiener and Simpson diversity indices and Menhink and Margalef richness indices were used. Finally, the data obtained from both sections of soil and vegetation in three studied treatments were compared and analyzed using one-way ANOVA and Duncan test. The results showed that floodwater spreading and enclosure significantly increased the percentage of sand and total Nitrogen, and significantly reduced the percentage of silt and potassium compared to control treatment. Also, percentage of clay and organic matter, soil pH levels, conductivity and soil phosphorus showed no significant differences in the treatments under study. The results of variance analysis of various indices of diversity, richness and species evenness showed that all indicators had significant responses in three treatments and the highest diversity and species richness were observed in flood spreading and enclosure treatments. Due to changes in soil properties and vegetation in flood spreading and enclosure treatments compared to the control treatment, it can be stated that operations of floodwater spreading and enclosure in the studied region has had positive effect on modification of soil texture, increasing the permeability of the soil and ultimately improvement of the vegetation.


H. Ghamarnia, F. Sasani, B. Yargholi,
Volume 23, Issue 1 (6-2019)
Abstract

Exploring the homogenous regions for site specific management is important, especially in the areas under different anthropogenic activities. This was investigated using multi-way analysis including Factor Analysis, Hierarchical Clustering Analysis and k means in the areas under long-term wastewater irrigation over a period of more than 40 years, in Shahre Rey, south of Tehran. By using Factor Analysis model, eight factors as eight geochemical groups were extracted to explain approximately 60% of the total variance related to 37 soil physicochemical properties. The most important groups included the nutrient elements (OM, OC and N), micronutrients (Mn and B), soil water adsorption capacity (Clay, Silt, Sand and CEC), salinity and osmotic pressure (EC, OP and TDS) and sodification (SAR and Na). The maximum values of Cophenet and Silhouette coefficients were equal to 0.77 and 0.83, respectively, dictating the selection of the average linkage approach in Hierarchical Clustering Analysis and three clusters in the k-average method with 19, 24 and 34 mapping units. The Thiessen Polygons method in GIS was applied to separate the geochemical groups in the form of mapping units. This output, which was, in fact, the combination of multi-way models and its visual representation in GIS under separated mapping units of study area, could present suitable management activities for the areas under each cluster.

D. Khatibi Roudbarsara, A. Khaledi Darvishan, J. Alavi,
Volume 27, Issue 2 (9-2023)
Abstract

Soil erosion followed by sediment production is the most important phenomenon that causes soil and environment degradation in many areas and is increasing. Sediment fingerprinting is a method to identify sediment sources and determine the contribution of each source to sediment production. The present research was carried out to evaluate the relative erosion sensitivity of lithological units and to determine the contribution of each unit in bed sediment production using geochemical properties in the Vaz River located in Mazandaran province. The 33 soil samples were taken from the whole watershed and one sediment sample at the outlet of the watershed. Then, five tracers of B, Al, Sc, Mo, and Sn were selected as the optimal combination using three statistical tests range tests, Kruskal-Wallis, and discriminant function analysis. Finally, using optimal tracers and a combined multivariate model, the contribution of lithological units with very high (A), high (B), medium to high (C), and medium (D) sensitivity in bed sediment production were obtained using FingerPro statistical package and R software. The results showed that the contribution of lithological units with very high (A), high (B), medium to high (C), and medium (D) sensitivity in bed sediment production were 24.23, 50.77, 15.62, and 9.36%, respectively. Then, the specific contribution of each sensitivity class was also calculated to remove the effect of area on the results. The Qal lithological unit including the Quaternary sediments in the river bed and banks with very high sensitivity to erosion (A) and a specific contribution of 0.0807 % per hectare had the maximum contribution in bed sediment production in Vaz River.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb