Search published articles


Showing 12 results for Chloride

Sayed Shahram Mirodjagh, Ahmad Arzani,
Volume 3, Issue 1 (4-1999)
Abstract

In vitro salt tolerance of 28 cultivars of durum wheat with native and exotic origins was investigated, using MS medium containing sodium chloride. The resulting calli were subjected to 8 salinity levels including 0, 0.3, 0.6, 0.9, 1.2, 1.5 and 1.8 percent NaCl (w/v). Donor plants of explant (immature embryo) were grown in a recirculating hydroponics and pots in a greenhouse as well as in the field. Assessment of calli was conducted after 0, 8 and 16 days after subculture of calli into the NaCl-contained medium. Callus growth rate, relative callus growth rate and percentages of callus necrosis were measured, using a 8 × 28 factorial experiment layout in a completely randomized design with 3 observations per treatment and 3 replications. Results of analysis of variances showed that among the criteria, relative growth rate of callus was the most reliable, while callus growth rate as not being quantitatively measured, was less devoted. Results of this study revealed that 'PI 40100' and 'Dipper-6' were superior genotypes for in vitro salt tolerance. The high relative callus growth rate and less callus necrosis of these cvs. may indicate their superior genetic potential for in vitro salinity tolerance.
M. Sayyari, M. Rahemi,
Volume 6, Issue 4 (1-2003)
Abstract

‘Golden Delicious’ apples were vacuum infiltrated (250 mm Hg) with 0, 4, and 6% solutions of CaCl2 followed by heat treatment for 0, 48 and 72 hours at 38oC. Treated fruits were stored at 0oC with RH of 85-90% for 2.5 and 5 months, followed by one week of storage at 20C. The results showed that fruits treated with 4 and 6% of CaCl2 significantly increased calcium content of fruits after 2.5 and 5 months of storage at 0oC. With increasing calcium content, fruit firmness also increased. There was a positive relationship between fruit firmness and calcium content and regression coefficients after 2.5 and 5 months of storage at 0oC were 0.77 and 0.83, respectively. Heat treatment for 48 and 72 hours at 38oC significantly increased fruit firmness. Calcium chloride at 4 and 6%, plus heat treatment, significantly increased fruit firmness of those fruits held for one week at 20oC after removal from cold storage. In the second experiment, vacuum infiltrated fruits with 4 and 6% solutions of CaCl2 plus potassium permanganate (0, 10, and 20 g/bag) had no significant effect on fruit firmness, but potassium permanganate alone significantly increased fruit firmness.
H. Hokmabadi, K. Arzani, Y. Dehghani-Shooraki, B. Panahi,
Volume 7, Issue 4 (1-2004)
Abstract

To determine the effects of salinity and boron excess in irrigation water on relative growth rate (RGR), net assimilation rate on a leaf weight basis (NAR), and leaf weight ratio (LWR) of pistachio, three pistachio rootstocks (Badami -Zarand, Sarakhs and Ghazvini) were used. Rootstocks were grown in soil in eight-liter polyethylene pots. Sodium chloride treatments were 0, 75,150 and 225 mM NaCl and boron treatments were 0, 20 and 40mg liter-1. Treatments were applied to the one-year old pistachio rootstock seedlings in three-day intervals with irrigation water. Some plants were randomly selected and destructively harvested before (day 0) and after applying treatments (30 and 60 days after treatments started). Growth and physiological characters were then measured as follows: number of leaves, leaf area, plant height and root length, fresh and dry weights of stem, root and leaf, proline accumulation in the leaf, total chlorophyll, and leaf relative water content (RWC). Results indicated that relative growth rate decreased with time for all treatments and in all rootstocks. Salt treatment significantly reduced both RGR and NAR, whereas LWR showed no significant differences. In all rootstocks, NAR, but not LWR, was significantly correlated with RGR, indicating that NAR was an important factor underlying the salinity-induced differences in RGR among the pistachio rootstocks. Salinity did not affect leaf water potential (ψ), chlorophyll content, and Fv:Fm ratio but increased NaCl concentration and time correspondingly increased proline accumulation in leaves. In addition, Ghazvini rootstock accumulated more proline compared to other rootstocks and was more resistant to salinity treatments. Different boron treatments did not show any significant effect on growth rate nor on measured parameters after two months of exposure to treatments.
M. Heidari, E. Tafazoli,
Volume 9, Issue 2 (7-2005)
Abstract

One of the main criteria for salt tolerance is cell membrane stability under stress. Reactive oxygen species (ROS), activity of lipoxygenase (Lox) and lipid peroxidation are considered to be destructive to cell membrane under salt stress. In this study, the effects of 0, 75 and 150 mM NaCI, over a period of 14 days on the activity of lipoxygenease, the amount of hydrogen peroxide (H2O2) and malon dialdehyde (MDA. as a lipid peroxidation) in the leaves of Pistacia vera L. (cv. 'Qazvini' and wild 'Sarakhs' pistachio) and 'Mastic' (P. mutica F. & M.) were studied. The results indicated that by increasing salinity Lox activity increased in the leaves of all the three rootstocks. This activity reached a climax on the 7th day and then decreased on the 14th day. Among the three species, Mastic reached the highest amount of the Lox activity on the 14th day with the lowest amount of Lox reduction. The amounts of H2O2 in the leaves of all the three rootstocks increased, on the 14th day the highest amount of hydrogen peroxide was found in 'Mastic' and 'Sarakhs' after treating them with 150 mM NaCl. The amounts of MDA were also reached the highest level in all three rootstocks on the 7th and 14th days. The results also indicated the possibility of the use of lipid peroxidation index and Lox activity for selecting salt tolerant Pistacia rootstocks. More studies are needed for understanding the biochemical changes and enzyme activities in Pistacia rootstocks under salt stress.
S. Sharif, M. Saffari, Y. Emam,
Volume 10, Issue 4 (1-2007)
Abstract

Many experiments have been carried out to alleviate the negative effect of drought stress and to obtain suitable growth under water deficient condition. Application of plant growth regulators (especially growth retardants) is one of the proposed methods. In a greenhouse experiment using a completely randomized block design with 4 replications at Kerman University Agricultural Department, the effect of 4 drought levels 25, 45, 65, 85 percent of field capacity and 3 different concentrations of chlormequat chloride 0, 1500, and 3000 mg/liter on some factors of winter barley cultivar Valfajr was investigated. Results indicated that increasing the cycocel concentration from 0 to 3000 milligram per liter leads to significant decrease in plant height. Relative water content affected by growth retardants was increased. Numbers of tillers and root and shoot dry weight, were also decreased because of applying cycocel in dry condition. The result also indicated that the root/shoot dry weight ratio, grain number per ear and ear number in dry condition without stress would increase using cycocel treatment.
M. Soltani Huwyzeh, S.a.m. Mirmohammady Maibody , A. Arzani,
Volume 11, Issue 42 (1-2008)
Abstract

  Sugarcane is one of the most important sugar crops in the world. Because of semi-arid climate and salinity of its cultivation area in our country, increasing salt tolerance of sugarcane is signifying. To achieve this goal determining salt tolerant cultivars and understanding salinity mechanisms in sugarcane are very important. This study was conducted to evaluate 8 commercial and promising sugarcane cultivars at early stage of growth. A complete randomized design with three replicates and four salinity treatments (0, 0.25, 0.5, 0.75 % NaCl) was used in a hydroponics system. The effect of salinity on absorption, transport and accumulation of Na+, Cl- , K+ and Ca2+ ions in shoot and root was determined. At high level salt concentration, Cl- content in shoot and root increased. Result showed that sodium accumulation in sugarcane plants was more than potassium. By increasing salinity level, sodium uptake and its translocation to shoots increased reducing growth and dry matter yield of plants. With rising salt concentration from medium (0.5%) to high (0.75%), content of chloride in shoot and root of NCO-310 was constant showed that this cultivar had genetic ability to avoid Cl- uptake. CP82-1592 with lowest ratio of shoot / root chloride had minimum transport of Cl- to shoots. Also this cultivar had high content of Ca2+ in shoot and low Na+/Ca2+ ratio at all salinity levels. CP48-103 had low sodium in shoot and relatively low sodium in root. Thus it probably has genetic potential to avoid sodium uptake. At last, exclusion of Na+ and Cl- to older leaves and tillers was seen in CP82-1592 and CP72-2086 cultivars. According to results, to avoid once of absorption and transport, and exclusion of harmful Na+ and Cl- ions were mechanisms that could be used in salinity tolerance of sugarcane.


Y Hosseini, M Homaee, N Karimian, S Saadat,
Volume 12, Issue 46 (1-2009)
Abstract

Modeling plant response to salinity and nitrogen deficiency is very important for estimating optimum yield in arid and semi-arid regions. For this purpose, the models of Leibig-Sprengel (LS) and Mitscherlich-Baule (MB) originally proposed to explain plant response to nutrients only were modified to evaluate plant yield response to combined nitrogen and salinity stress conditions. Afterwards, in order to model canola (Brassica napus L.) response to combined salinity and nitrogen stress, an experiment was designed with different nitrogen and salinity levels. The water salinity treatments consisted of non-saline water, 3, 6, 9 and 12 dS m-1. The nitrogen treatments were 0, 75, 150 and 300 mg kg soil-1 added as ammonium nitrate. The results indicated that both modified models can satisfactorily predict canola yield. However, the modified MB model (R2=0.94) provided better estimation than the modified LS model (R2=0.87). The calculated statistics including Maximum Error, Root Mean Square Error, Modeling Efficiency, Coefficient of Determination and Coefficient of Residual Mass for the modified models indicated that the estimated relative grain yield for soil nitrogen, salinity and each rate of soil nitrogen in salinity levels by modified MB model compared with those by modified LS model is closer to the measured relative yield. Therefore, the use of modified MB model for estimating canola relative grain yield in salinity and nitrogen stresses is recommended. Using modified LS model showed that the salinity threshold value changes with the applied nitrogen. In this case, by application of each 75 mgN kg-1 soil, the salinity threshold value decreased 4 dS m-1 in saline conditions. Application of nitrogen decreased chloride concentration in grains under saline conditions. Nitrogen uptake also augmented with increasing canola transpiration, because nitrogen was carried over from soil to the uptake sites mainly by mass flow.
Alireza Hosseinpur, Hamidreza Motaghian, Tahereh Raeisi Gahrooee1,
Volume 17, Issue 64 (9-2013)
Abstract

Information about potassium (K) release characteristics in the Chaharmahal-va-bakhtiari soils is limited. In this study, K release kinetics of fifteen calcareous soils was investigated. Soil samples were extracted using successive extractions with 0.01 M CaCl2 and citric acid solutions for 2-2017 h at 25±1 0C. Moreover, soil K was determined using 6 chemical extraction methods. The results showed that released K ranged from 111 to 411 mg kg-1in calcium chloride solution and from 177 to 1199 mg kg-1 in citric acid solution for 2017 h. Amounts of extracted K using any extraction methods were different. Result of kinetics study and chemical methods indicates that K supplying power of the soils is different. A plot of cumulative amounts of released K shows a discontinuity in slope at 168 h. Thus, two equations were applied to the total reaction time (2 to 168 and 168 to 2017 h). Moreover, results showed that release kinetics of K conformed fairly well to parabolic diffusion, simplified Elovich and power function models in two segments in 0.01 M CaCl2 and citric acid. In addition, results showed that correlation between released K by using 0.01 M calcium chloride and citric acid and extracted K using chemical methods was significant. The results of this research showed that kinetic studies and soil testing could be used for evaluating K fertility status of studied soils.
M. S. Maleki, H. Byatt, T. Ebadi,
Volume 19, Issue 71 (6-2015)
Abstract

Some recent research has indicated that certain alkaline contaminations may adversely affect mechanical properties of clayey soils. To examine the potential impact of alkaline divalent barium on the swelling characteristics of KAHRIZAK clay, the major solid-waste landfill at south of Tehran, a systematic set of experiments was conducted. Observations indicated that the swelling in the studied soil that belonged to the CH-MH group with a PI of 28.44, was reduced by about 17, 37, 48 and 54 percent, and swelling pressure by about 41, 55, 65 and 67 percent, respectively, after addition of barium chloride solutions to concentrations of 0.25, 0.5, 0.75 and 1.25 molal. It was also found that addition of barium chloride solutions to concentrations of higher than 1 molal had a little effect on reduction of swelling and swelling pressure.


S. Shakeri, S. A. Abtahi, N. A. Karimian, M. Baghernejad, H. Owliaie,
Volume 19, Issue 73 (11-2015)
Abstract

The aim of this study was to assess the kinetics of nonexcheangable potassium release in surface and subsurface soil horizons, using organic and inorganic extractions, in Kohgilouye-va-Boyerahmad Province. Kinetics of K+ release was studied by successive extractions of K from 64 selective surface and subsurface soil samples, using 0.01 M CaCl2 and 0.01 M oxalic acid, for 1948 h, with two replicates. Nonexchangeable K+ release was fitted by Elovich, Pseudo-first order, Power function and Parabolic equations. Result showed that the average nonexchangeable K+ released (extracted by 1M HNO3) was 356 mg/kg, while those extracted by CaCl2 and oxalic acid after 1948 h were only 58% and 52% of the total amount of nonexchangeable K+ of the soils, respectively. In all soil samples, nonexchangeable K+ released by oxalic acid was less than that released by CaCl2, due to the high buffering capacity resulting from high carbonates in the soils. Potassium release rate in Elovich and Parabolic equations were significantly correlated with non-exchangeable potassium and some physical and chemical characteristics.  Based on high Coefficients of determination (r2) and low Standard errors (SE), Elovich, Power function, First order and Parabolic equations were selected as the best equations for prediction of K+ release from the soils.


S. Z. Atar Shahraki, A. R. Hosseinpur, H. R. Motaghian, Sh. Ghorbani,
Volume 22, Issue 1 (6-2018)
Abstract

The study of the kinetics of non-exchangeable potassium (NEK) release is very important for a better understanding of K availability for plants in different soils. Moreover, aggregates with different sizes have different effects on the release of nutrients. Therefore, the aim of this study was to examine the release of NEK in 5 calcareous soils of chaharmahal-va- bakhtiari province, and small and large aggregates (<250 μm and >250 μm) using CaCl2 0.01 M at 25±1ºc for 2-2017 h. The results showed that cumulative released NEK in soils, and small and large aggregates was 173.5-372.7, 215.1-426.1 and 178.9-381.5 mg kg-1, respectively. The results revealed that coefficients of the cumulative released NEK in small aggregates was lower than those of the soils and large aggregates. Based on the coefficient of determination (R2) and standard error (SE), the released NEK was well described by the first order, the power function, parabolic diffusion, and simplified Elovich equations. The rate coefficients of the release of K were different in different soils. The cumulative released amount of K and its rate of release in a solution of calcium chloride in small aggregates was more than those of large aggregates.

M. Kashi, S. Alizadeh Ajirlo, N. Najafi,
Volume 28, Issue 1 (5-2024)
Abstract

The reduction of water resources due to the issue of global climate change and population growth is one of the most critical issues facing the designers and planners of the development of green spaces in cities. Against these challenges, there is an urgent need to improve the efficiency of water consumption and chain use of water resources with suitable options. Due to the significant volume of urban wastewater Effluent, its reuse in green space irrigation is important from the point of view of water resource management from an ecological and economic point of view. The effect of the Parand city wastewater treatment plant on the chemical properties of soil under the cultivation of three types of cover crops (Frankinia (FR), Festuca (FE), Dichondra (DI)) in a bed with sandy loam soil is investigated. This study was conducted as a factorial experiment based on a completely randomized design using mixing of water and Effluent at 4 levels with irrigation treatments of zero (control), 50, 75, and 100% compared to fresh water and 3 replications, and then the soil chemistry characteristics such as pH, EC, OC, Na, Cl, Ca, and Mg were evaluated. The results obtained from the soil chemical analysis parameters showed that the pH value decreased in all the treatments with effluent compared to the control, and this decrease was not significant in any treatment. The values of EC and Cl have increased in all plants, and these values were significant in the FR100 treatments with an increase of about 195 and 561% compared to the control, and in the FE100 treatment with an increase of about 54 and 162%, respectively, at the 5% probability level. The amount of OC in the FR100 treatment was significant with an increase of about 41% compared to the control treatment, but in other plants, this ratio was not significant in any treatment. The maximum amount of Mg in the FR50 treatment was 30.27, which has a significant effect compared to other treatments. The amount of Na and Ca in the FR100 treatment was significant with an increase of about 343% and 130%, respectively, compared to the control treatment, while in FE and DI plants, this ratio was not significant in any treatment.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb