Search published articles


Showing 12 results for Chlorophyll

H. Noushad, A. Ronaghi, N. Karimian,
Volume 5, Issue 3 (10-2001)
Abstract

Nitrogen fertilizer application for corn (Zea mays L.) based on available N of soil can decrease the need to N fertilizer and, consequently, reduce the risk of environmental pollution, especially that of groundwater and drinking water. The objectives of this study were i) determining soil N03-N critical level at 4 to 6 leaf stage, ii) to study soil nitrate distribution, iii) determining N rate required for maximum corn grain yield, iv) measuring soil residual nitrate nitrogen after harvesting, and v) using hand chlorophyll meter to evaluate N status of corn. The experiment was conducted under field conditions in Bajgah and Kooshkak research stations (Fars Province) in 1996 using a split plot randomized complete block design with four replications. Main plots were control, 60, 120, and 180 kg N ha-1 as urea. At 4 to 6 leaf stage each main plot was divided into two sub-plots and N was applied at 60 kg N ha-1 rate to one sub-plot and the other sub-plot was left as control.

 Results showed that critical soil N03-N level at 4 to 6 leaf stage in 0-30 cm depth for 90 percent relative yield in Bajgah was 12-14 and for Kooshkak was 8-10 mg kg-1 soil. The highest coefficient of determination between corn grain yield and soil N03-N in 0-30 cm depth for Bajgah was in furrow sample and for Kooshkak was in furrow and shoulder composite sample. In both sites, maximum corn grain yield, with 15.5% moisture content, was about 14 mg ha-1 that was obtained through the application of 120 kg N ha-1 as preplant plus 60 kg N ha-1 as sidedress which is about 1/2 of the application rate used by local farmers. The highest residual soil N03-N after harvesting was 24 and 18 and the lowest was 2.6 and 3 mg kg-1 soil for Bajgah and Kooshkak soils, respectively. When maximum corn grain yield was obtained, chlorophyll meter reading at the middle of leaf blade at dough stage, was 49 for both sites. It seems that N fertilizer application rate by local farmers is excessive.


A. Ronaghi, Y. Parvizi, N. Karimian,
Volume 5, Issue 4 (1-2002)
Abstract

Nitrogen is usually the most limiting nutrient for crop production. Manganese deficiency in some calcareous soils of Iran has been reported. The objective of this study was to evaluate the effect of N and Mn on the growth and chemical composition of spinach (Spinacia oleracea L.) under greenhouse conditions. The experiment was conducted in a soil from Chitgar series (Fine-loamy, carbonatic, thermic, Calcixerollic Xerochrepts). Treatments consisted of factorial arrangement of five N rates (0, 50, 100, 200 and 400 mg kg-1 as NH4NO3) and three Mn rates (0, 15 and 30 mg kg-1 as MnSO4) in a completely randomized design with four replications. Plants were allowed to grow for 60 days and a hand-held SPAD-502 chlorophyll meter was used to evaluate leaf chlorophyll status at harvest.

 Results showed that N and Mn application increased shoot dry weight, N and Mn concentrations and total uptake, Mn:Fe ratios and chlorophyll readings, significantly. Nitrogen increased concentrations and total uptake of Zn, Cu and total uptake of Fe in plants, but decreased Fe concentration. Addition of Mn decreased Fe and Zn concentrations in spinach but increased total uptake of Fe and Cu. When maximum dry matter was obtained, the chlorophyll meter reading was about 40. A similar study should be carried out under field conditions before the N and Mn fertilizer recommendations for spinach can be made.


A. Enferad, K. Poustini, N. Majnoon Hosseini, A. A. Khajeh-Ahmad-Attari,
Volume 7, Issue 4 (1-2004)
Abstract

In a pot experiment, the growth (Dry matter) responses of 18 rapeseed varieties to three levels of NaCl salinity induced by 1.2, 6, and 12 dS.m-1 were investigated using a factorial experiment with a randomized complete block design in 3 replications. The results indicated that salinity reduced total dry matter, Na concentration, K/Na ratio, ion selectivity of K versus Na, and leaf water potential while it increased K concentration. However, the leaf water potential of the plants had the highest and a significantly negative correlation with total dry matter accumulation. Therefore, it seemed that leaf water content of the plants could explain the tolerance or sensitivity responses to salinity. The rapeseed varieties were accordingly ranked into different groups. The varieties viz, Alice, Fonax, DP.94.8 and Licord were classified as saline tolerant group, and varieties such as Okapi, Akamar and Eurol as saline sensitive group. The remaining eight rapeseed varieties were moderately tolerant. Moreover, the response of rapeseed varieties viz. Consul, VDH8003-98 and Orient were different such that the above explanation could not be applied to them. Therefore, halophytic strategies for these three varieties might be worth further investigation.
N. Etemadi, K. Razmjoo, A. Khalighi, Z. Zamani, H. Lesani,
Volume 10, Issue 4 (1-2007)
Abstract

Turfgrasses are the most important cover plants in the world. Quality evaluation of the turfgrasses is usually done by experienced evaluators using color texture, density and uniformity. The results obtained by different evaluators may be different, leading to researcher’s concern. Therefore, some quantitative methods have been used for increasing the aquracy and stability in results. In this study, three color evaluating methods including, spectrophotometery (chlorophyll content), chlorophyllmeter SPAD-502, and evaluator person, as well as leaf texture by evaluator person compared with leaf width were used for 75 populations of Cynodon dactylon L. and Tifdwarf cultivar. The results showed that there were significant differences between populations for the color and leaf texture. There were no significant corelations between measuring color by using specterophotometery, chlorophyllmeter-502, and evaluator. Use of SPAD-502 instrument for measuring leaf color of bermudagrass is not recommended due to small leaf width of this species. However, there was significant corelation between visual evaluation and leaf width in measuring leaf texture. Therefore, when no experienced evaluator is present, leaf width maybe used for measuring leaf texture.
F. Sorkhy Lalelo, A. Dabbagh Mohammadi Nassab, A. Javanshir,
Volume 12, Issue 45 (10-2008)
Abstract

A pot experiment was designed to investigate the effects of full, above and below ground interactions of wheat with wild oat on leaf characteristics and root to shoot ratio. This experiment was conducted as a factorial based on randomized complete design with four replications. The treatments included four interference levels (above ground, below ground, above and below ground and check wheat and wild oat) and four wild oat densities (2, 4, 6 and 8 plants/pot).The effects of full and root interference on wheat and wild oat traits was greater than shoot interference. For both species, full and below ground interaction significantly decreased the number of leaves, flag leaf area and chlorophyll content of flag leaf compared to above ground interaction and control. All traits of wild oat were reduced by above ground interaction compared to control. Number of leaves of wheat and wild oat showed greatest susceptibility to interaction treatments. There was no significant different between full and root interference. When wild oat density increased, the number of leaves, flag leaf area and chlorophyll content of flag leaf of wheat decreased. With strongest competition followed by enhanced wild oat density, root to shoot ratio in wheat and wild oat increased, which indicates more susceptibility of shoot than root to interference mean competition. This ratio for wild oat was more than wheat, thus, it is concluded that wild oat has higher rooting ability compared to wheat.
M Alimohamady, A Rezaee, A.m Mirmohamady Meybodi,
Volume 13, Issue 48 (7-2009)
Abstract

This study was conducted in Research Farm of Isfahan University of Technology to evaluate some of the agronomic and physiological traits and grain yield potentials of ten bread wheat cultivars using a split plot design with three replications. Main and sub plot consisted of optimum and stress moisture treatments (irrigation after 70±3 and 130±3 mm evaporation from class A pan) and wheat cultivars, respectively. The results of analysis of variance revealed significant effect of moisture treatments on all traits except 1000-grain weight, harvest index, specific leaf weight, assimilate redistribution and difference of peduncle weights at heading. Significant differences were found among genotypes in the stress condition except for chlorophyll b and chlorophyll a to b ratio. Significant differences were detected among genotypes in optimum moisture condition for all characters, except for chlorophyll b, chlorophyll a to b ratio, harvest index and assimilate redistribution. Grain yields in two moisture conditions had significant positive phenotypic and genetic correlations with harvest index, number of grain/spike, RWC, chlorophyll a and sum of chlorophylls a and b and had significant negative correlation with RWL. Significant positive correlation was observed between peduncle weight at heading stage and difference of peduncle weights at stages heading and maturity with grain yield and RWC in moisture stress condition. The results of path analysis for phenotypic correlation coefficients between grain yield and their corresponding traits in the regression model showed that in stress condition harvest index had the highest direct and positive effect on grain yield and in non stress condition chlorophyll a had the highest direct and positive effect on grain yield. Results of stepwise regression analysis in non stress condition revealed that chlorophyll a, plant height and harvest index explained more than 90% of grain yield variability. Based on stepwise regression analysis in non stress condition, RWL, harvest index and RWC explained 95% of grain yield variability.
H.r. Memari, E. Tafazoli, A. Kamgar-Haghighi, A. Hassanpour, N. Yarami,
Volume 15, Issue 55 (4-2011)
Abstract

Many experiments have been carried out to decrease the negative effect of drought stress and obtain suitable growth under water deficit conditions. Application of plant growth regulators (especially growth retardants) is one of the proposed methods. This study was conducted to investigate the effect of Cycocel application on growth of two olive cultivars (Shengeh and Roghani) under water stress condition. The design of experiment was completely randomized with six replications (Factorial arrangement). Treatments included irrigation intervals (2, 4, 6, 8 weeks) and Cycocel concentrations (0, 500,1000,2000,4000 mg per litter). Some indices such as height, chlorophyll, leaf area, root, and shoot weight (fresh and dry) were measured. Results indicated that interaction of C.C.C treatment and irrigation intervals on height of olive cultivars was not significant, probably due to the response of these cultivars to concentrations of C.C.C. Although drought stress decreased the number of leaves in both cultivars, the application of CCC (500 mg per litter) thwarted the adverse effects of drought stress. Cycocel increased chlorophyll content significantly (500 mg per litter in Roghani and Shengeh and 6 weeks irrigation interval). Cycocel application decreased leaf area, but in Shengeh cultivar increased leaf area in 6 week irrigation interval. Overall, the results indicated that the application of Cycocel with concentration of 500 mg per litter in 6 week irrigation intervals in both cultivars (Roghani and Shengeh) was the best treatment for controlling the adverse effects of drought. Also, results indicated that such changes were dependent on Cycocel concentration and drought level.
H.r. Eshghizade, A.h. Khoshgoftarmanesh, P. Ehsanzadeh, M. Kafi,
Volume 15, Issue 57 (10-2011)
Abstract

The growth and fluorescence parameters of chlorophyll in four corn hybrids including two sweet (K.S.C. 403 and K.S.C. 404) and two grain hybrids (S.C. 500 and S.C. 700) were evaluated in response to Fe and Zn nutrition in a nutrient solution culture. This study was conducted in a randomized complete block design with a factorial arrangement with three replications at the Soilless Culture Research Center (SCRC). Corn hybrids were exposed to two Fe levels (5 and 50 µM Fe in the form of FeEDTA) and two Zn levels (0 and 2 µM Zn in the form of ZnSO4). Increasing Fe concentration in the nutrient solution increased F0, Fm, and Fv/Fm values by 48, 96, and 123%, respectively. The fluorescence parameters of chlorophyll were affected by corn hybrid and there were significant differences in F0 and Fv/Fm at 1% level and Fm at 5% probability level among the studied hybrids. Iron deficiency significantly (P<0.05) reduced the root dry weight of all the studied hybrids. Zinc deficiency resulted in a significant decrease in the root dry weight of H403 and H500 hybrids while no significant decrease was found in the root dry weight of the H404 and H700 hybrids under Zn condition. The results showed that corn hybrids varied significantly in their tolerance to Fe and Zn deficiency. Based on the results of plant growth and fluorescence parameters of chlorophyll, the studied grain corn hybrids were more tolerant to Fe and Zn deficiency conditions in comparison with sweet corn hybrids. It seems fluorescence parameters of chlorophyll might be suitable parameters to screen corn hybrids in their tolerance to Zn and particularly Fe deficiency condition.
Amir Hossein Khoshgoftarmanesh, Hamid Reza Eshghizadeh, Azadeh Sanaeei Stovar, M. S. Mirlohi, M. Taban,
Volume 17, Issue 64 (9-2013)
Abstract

Iron chlorosis is an important disorder of plane trees (Plantanus orintalis L.) in green space of Isfahan city. Before using reclamation methods for correcting Fe chlorosis, it is necessary to find a suitable index for evaluating plant Fe status. Therefore, activity of glutathione peroxidase (GP) enzyme and concentration of carotenoids and chlorophyll a and b pigments, as physiological indices of active Fe, were compared to total Fe concentration in leaves to evaluate Fe status in plane trees. For this purpose, severity of chlorosis of plane trees at different regions of Isfahan city was recorded. Then, 73 trees with different severity of chlorosis symptoms were selected and their leaves were sampled on July 2009 and 2010. Concentration of Fe, chlorophyll a and b and carotenoids in leaves as well as activity of GP enzyme were measured. Results showed large variation in leaf Fe concentration between young and old leaves and also between leaves with different chlorosis severity symptoms. No correlation was found between leaf Fe chlorophyll concentration and severity of chlorosis symptoms. Also, concentrations of chlorophyll a in young and old leaves with very severe chlorosis symptoms were 44 and 37% smaller than that in young and old leaves with slight chlorosis symptoms, respectively. Concentration of chlorophyll b in young and old leaves with very severe chlorosis symptoms were 40 and 37% smaller than that in young and old leaves with slight chlorosis symptoms, respectively. Concentration of carotenoids varied among young and old leaves with different severity of chlorosis symptoms. Activity of GP in young leaves was also reduced by intensifying severity of chlorosis symptoms. According to the result of the present study, activity of GP enzyme and leaf concentration of carotenoids and chlorophyll a, as suitable physiological indices of active Fe, had close correlation with severity of Fe chlorosis in plane trees. Also, deficiency of active Fe in leaves is a probable reason of chlorosis symptoms in plane trees.
V. Jahandideh Mahjen Abadi, M. Sepehri, A.h. Khoshgoftarmanesh, H. R. Eshghizadeh, D. Rahmani Iranshahi,
Volume 19, Issue 71 (6-2015)
Abstract

Zinc deficiency is the most widespread micronutrient disorder in the production of wheat (Triticum aestivum L.) and other cereal crops. An experiment was conducted in greenhouse, in 2013, using the sterile sand-perlite (2:1 v/v), to study the effects of two beneficial microorganisms on growth and nutritional status of wheat (Nicknejad cultivar). The study was arranged as factorial in a completely randomized design with three replications. The experimental factors consisted of Piriformospora indica (E0: Uninoculated E1: Inoculated), Pseudomonas putida (E0: Uninoculated E1: Inoculated) and Zinc (Zn0: 0 Zn1: 2µM ZnSO4 ). The results showed that inoculation by P. putida increased shoot dry weight at both levels of zinc, but this increase was observed for root dry weight only without zinc application. The iron concentration of shoot was decreased as a result of inoculation by P. putida at both levels of zinc. However, P. indica inoculation increased iron concentration in zinc application, but had no significant effect without zinc application. At both levels of zinc, the highest P, Zn, chlorophyll a and b concentrations were achieved by inoculation with P. indica. Inoculation by P. putida reduced P concentration at both levels of zinc but it reduced Zn, chlorophyll a and b concentrations only with zinc application. The results of this research showed that despite negative effect of P. putida on nutrient uptake, inoculation by P. putida and/or P. indica plays an important role in the promotion of wheat growth in zinc deficiency conditions.


H. Sharifan, S. Jamali, F. Sajadi,
Volume 22, Issue 2 (9-2018)
Abstract

In order to study the effects of different irrigation regimes and different levels of salinity on the growth parameters of Quinoa (Chenopodium quinoa Willd.), this experiment was performed in the research green house of Water Engineering Department, at f Gorgan University of Agricultural Sciences and Natural Resources, during 2016. The experimental design was a factorial with n a randomized complete design in three replications. Treatments included three irrigation levels (100, 75 and 50 percent of water requirements calculated by the evaporation pan class A) and five salinity levels (0.5, 4.3, 8, 11.8, 16 dSm-1). The results showed that the effect of irrigation on the Leaf area index, chlorophylls and RWC (P<0.01) and Leaf length, and width (P<0.05) was significant. The effect of salinity levels on the Leaf area index, chlorophylls, Leaf length and width, RWC, Specific leaf weight (P<0.01) and Leaf petiole length (P<0.05) was significant too. The interaction between irrigation and salinity levels on chlorophylls and RWC (P<0.01) and Leaf width (P<0.05) was significant as well. According to the results, Quinoa had a good tolerance to the elevated levels of deficit irrigation. Decreasing the irrigation levels from 100 to 50 percent of pan evaporation resulted in the reduction of the Leaf area index and RWC to 24.6 and 7.3 percent, respectively. The result also showed that Quinoa had a good tolerance to the elevated levels of salinity, the mixing sea water, and tap water at rate of 30 percent, with control treatment having no significance for all of the parameters. It seems that good stand establishment in the saline soils and water conditions could be insured if proper management is applied in the farms.

B. Rezaeiniko, N. Enayatizamir, M. Norouzi Masir,
Volume 22, Issue 4 (3-2019)
Abstract

Zinc is essential micronutrients for plants. This element improves plant growth and yield and plays a role in the metabolism of carbohydrates. Zinc deficiency in soils and Iranian crops is possible due to numerous reasons such as calcareous soils, excessive use of phosphorus fertilizers and unbalanced fertilizer use. The effect of zinc solubilizing bacteria on some wheat properties was considered as a factorial experiment in greenhouse conditions based on a completely randomized design. Treatments consisted of four levels of bacteria comprising B1 (control), B2 (Bacillus megaterium), B3 (Enterobacter cloacae) and B4 (consortium of both bacterium), and ZnSO4 fertilizer at three levels including Zn0 (control), Zn20 (20 Kg/ha) and Zn40 (40 kg/ha). During the experiment, some parameters such as plant height and chlorophyll index were measured. At the end of the cultivation period, soil available zinc, dry weight of root and aerial part, and the zinc concentration of the root, shoot and grain were determined. Grain yield and zinc uptake in the grain were also calculated. The results indicated soil exchangeable zinc content was increased significantly (P<0.05) in all bacterial treatments, as compared to the control treatment. The maximum amount of soil exchangeable zinc, grain yield, zinc concentration and uptake in grain were observed in the treatment containing bacteria consortium with the application of 40 kg/ha of zinc sulfate fertilizer, which was followed by the treatment containing Enterobacter cloacae with the application of 40 kg/ha of the zinc sulfate fertilizer. The maximum amount of all measured properties in the treatment containing Enterobacter cloacae and Bacillus megaterium indicated the possibility of applying those bacteria for zinc enrichment in wheat, crop optimal production, and the sustainable agriculture.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb