H. Majdi, M. Karimian- Eghbal, H. R. Karimzadeh, A. Jalalian,
Volume 10, Issue 3 (10-2006)
Abstract
Stabilizng sand dunes has been one of the main challenges in the arid regions. So far, different kinds of mulches have been used extensively for sand dune stabilization. This study was carried out to determine the optimum composition, concentration and thickness of clay mulch for sand dune stabilization. For this purpose two soil samples from clay flats of a playa with different amount of salinity from Ardestan area were used to make clay mulches. A sand dune sample was selected as bed for applying the mulch. To select the right ingredient and treatments, clay samples were mixed with sand and different amount of water, and sprayed on sand dune bed. In addition, wheat straw was added to some mixture to test its effect on stability of the mulch. Treatments with lowest crack and highest penetration of mulch in sand bed were selected for the experiment in this study. Mulch treatments contained (1): 250g sand dune + 250g clay + 25g straw (2) 250g clay + 25g straw (3) 250g sand + 250g clay (4) 250g clay (5) 125g sand + 125g clay and (6) 125g clay. All treatments were mixed with 500ml water. The experimental design was a CRD with a 6(mulch) * 2(thickness)* 2 EC factorial method with 3 replications. The results showed that clay mulch were resistant to wind erosion, but erosion took place when they had been bombarded with sandblast. The mulches with straw showed the highest resistance to erosion as compared to other treatments. With increasing the number of mulch layers, resistant to erosion also increased. The added stability of mulch was due to the increase in mulch thickness and also increases in clay and silt content. The overall result of this study shows that the mulch with two layers and higher mixture of clay and sands was the best treatment for the stabilization of sand dunes.
E. Javiz, A. Jalalian, M.r. Mosaddeghi, E. Chavoshi, N. Honarjoo,
Volume 26, Issue 4 (3-2023)
Abstract
One of the most significant environmental crises in arid, semi-arid, sub-humid, and even humid regions is the destructive phenomenon of desertification and in the arid and semi-arid regions is wind erosion. These problems exist in large areas of Iran and it is necessary to use an environmentally friendly and economic method to solve this problem. In this study, calcium bentonite clay was used for the first time in Iran and perhaps in the worlds in the critical region of Sajzi, which covers an area of 65 hectares. Experiments were performed on the crusts after one year of mulching with bentonite clay. The results showed that wind erosion has a negative and significant correlation with the mean weight diameter and geometric weight diameter of aggregate, aggregates with diameters greater than 0.25 mm, shear strength, and penetration resistance. On the other hand, the results of the permeability test using double-ring and by three models (Kostiakov, Horton, and Philip) showed that the lowest mean square error (SSE) and the highest coefficient of determination (R2) belonged to the Kostiakov model in the mulch-applied and control samples. This result indicated the superiority of the Kostiakov model compared to Horton and Philip's models. Wind erosion intensity was also measured in situ using a portable wind tunnel at 20 points in the Sajzi region. The findings showed that mulch application has controlled more than 95% of soil erosion.