Search published articles


Showing 4 results for Clogging

M. Sarmast, M. H. Farpoor, M. Sarcheshmehpoor, M. Karimian Eghbal,
Volume 18, Issue 68 (9-2014)
Abstract

Biocalcite infilling and bridging in a sandy soil was studied in the present research. Effects of 2 bacterial species (Sporosarcina pasteurii and Sporosarcina ureae), 3 reactant concentrations (0.5, 1.0, and 1.5 M of urea and CaCl2 mixture), and 6 reaction times (12, 24, 48, 96, 192, and 288 hr) on saturated hydraulic conductivity and mechanical strength of a sandy soil were studied as a factorial experiment. Soil samples were selected from sand dunes of Joopar area, Kerman Province. Bacterial inoculums and reactant solutions were daily added to soil columns. Results of the study showed that S. pasteuriihad had a higher effect on decreasing hydraulic conductivity of the treated samples (11.57 cm/h) compared to the blank (41.61 cm/h) than S. ureae. Increasing reaction times (from 12 to 288 hrs) and reactant concentrations (from 0.5 to 1.5 M) decreased hydraulic conductivity by 49 and 16 %, respectively. S. pasteurii increased strength of treated samples up to 2.6 Mpa pressure compared to S. ureae. Reactant concentrations and reaction times increased soil strength significantly (2.13 and 4.1 Mpa, respectively). Micromorphological observation showed calcite crystals bridging soil particles and filling pore spaces.
C. Abdi, P. Fathi,
Volume 21, Issue 3 (11-2017)
Abstract

Drip irrigation is one of the new irrigation methods for optimum use of water resources and increase of irrigation efficiency. The emitters' clogging is the most important problem in these systems. The physical clogging is the most important factor in reducing the discharge and emission uniformity of emitters. The emitter position on the laterals and emitter spacing are the factors that affect the physical clogging rate of emitters. The objective of the present study is evaluating the effect of emitter spacing of drip irrigation tape on the physical clogging rate of emitters. For this purpose, a physical model of drip irrigation tape was designed and made at the laboratory. In this research, seamless and seamed irrigation tapes with emitter spacing equal to 10, 20 and 30 centimeters were used. Statistical analysis showed that emitters spacing have significant effect on clogging rate of emitters in seamless and seamed drip irrigation tapes. The results also indicated that seamless irrigation tapes with 30-centimeter emitters spacing, with clogging rate of 22 percent, have the least clogging. A comparison of clogging rate and uniformity coefficient of irrigation tape showed the higher performance of seamless irrigation tape in clogging condition.
 


H. Dabbaghi, M. Khoshravesh, M. A. Gholami Sefidkouhi,
Volume 22, Issue 2 (9-2018)
Abstract

Emitter clogging for using agricultural wastewater increases the operating costs and reduces the motivation of farmers. The new method to reduce the emitters clogging is the use of a Merus ring that does not have the problems of chlorination and pickling methods, such as pollution and high cost. Due to the importance of agricultural wastewater use, this study investigated the emitters clogging and the effect of Merus ring on the emitter's efficiency in a trickle irrigation system. The treatments including irrigation water (well water and wastewater) and modified water (irrigation with Merus ring and irrigation without Merus ring), as the main factor and the emitters type treatment including Irritec (D1), Corona (D2), Axios (D3), Netafim (D4), Polirood (D5), and Paya (D6) as the sub treatments were performed in three replications. The results showed that the agricultural wastewater caused the emitters clogging in irrigation water and modified water treatments, but over time, the Merus ring had a positive effect on the evaluation parameters of the emitters. For agricultural wastewater, in the first and last irrigation periods, the average discharge of emitters with the Merus ring was 0.05 and 0.33 Liter per hours, respectively, more than the treatment without the Merus ring. The uniformity coefficient of emitters in the first and last irrigation periods, in well water with the Merus ring, was 0.31%and 6.67%, respectively, more than that in the well water without the Merus ring. Also, the uniformity coefficient of emitters in the first and last irrigation periods in agricultural wastewater with the Merus ring was 0.85% and 12.10%, respectively, more than that in agricultural wastewater without the Merus ring. At the end of irrigation period, the results showed that Netafim and Axios had the best and weakest efficiency, respectively. In general, the emitters used in the treatment of well water with the Merus ring had the highest discharge and the emitters used in the treatment of wastewater without the Merus ring had the lowest discharge.

A. Akbarian Khalilabad, H. Karami, S. F. Mousavi,
Volume 29, Issue 3 (10-2025)
Abstract

The reduction of soil permeability due to the sedimentation of suspended particles is a significant challenge to the efficient operation of artificial recharge systems. In this study, the effects of sediment concentration (0.5, 2, and 4 g/L), soil particle size, and vertical distribution on clogging processes were investigated using laboratory soil column experiments. The results showed a two-phase decrease in permeability: a rapid initial drop caused by the blockage of coarse pores during the first 10 minutes, followed by a second phase where the system reached a relative equilibrium. Higher sediment concentrations led to a faster decline and lower equilibrium values of permeability. Fine-grained soils, despite having lower initial permeability, demonstrated greater resistance to clogging, while coarse-grained soils experienced more severe reductions. Vertical analysis indicated that the most significant permeability loss occurred at a depth of 40-50 cm, while deeper layers showed increased permeability due to the limited penetration of suspended particles. These findings can inform the selection of appropriate materials, the design of subsurface layers in recharge basins, the prediction of system lifespan, and the regulation of sediment load in inflows to enhance the efficiency and sustainability of artificial recharge systems.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb