Search published articles


Showing 7 results for Combination

E. Hosseini, J. Jamalian,
Volume 10, Issue 3 (10-2006)
Abstract

Consumption of foods with low glycemic index (G.I.) by diabetic patients helps maintain their blood sugar at acceptable levels. Ordinary jam has a high G.I. The purpose of the present investigation was to prepare a dietetic jam using nutritive and non-nutritive sweeteners. The investigation was carried out in four steps. First, glycyrrhizin was extracted from licorice extract powder, its ammonium form was prepared, and its purity was assay by HPLC. Secondly, based on a completely randomized design various types of jam were prepared using different combinations of sorbitol, fructose and ammonium glycyrrhizin. Thirdly, the prepared jams and their reference controls were evaluated for color, flavor, texture and overall acceptability by a selected taste-panel and were also subjected to physical analysis using Hunter Lab colorimeter and Bostwick consistometer. Two jam preparations were finally selected on the basis of their overall acceptability. Finally, glycemic indices of the selected jams were determined using NIDDM volunteers. The results showed that ammonium-glycyrrhizin enhances the overall acceptability of the selected product (P<0.05). As G.I. values for the selected jams were low (23.5 and 23.9), their consumption by diabetic patients and their production on a commercial scale are recommended.
M. R. Bakhtiari, M. Loghavi,
Volume 12, Issue 44 (7-2008)
Abstract

In the conventional methods of herbicide and fertilizer application, a substantial amount of toxic chemicals is sprayed or broadcast into the furrows, which is later washed away by irrigation water and may contaminate ground water, human and animal environment. If herbicide and fertilizer application could be limited to the most needed parts of the field rather than overall broadcasting, the mentioned problems could be alleviated and the application efficiency could also be increased by reducing the consumption rate. In an attempt to achieve this goal, a combination cultivator capable of simultaneously performing cultivation practices such as weed control (mechanical + chemical), fertilizer application and pest control was developed and evaluated. This machine was able to perform band spraying (fungicide, insecticide and herbicide) and mechanical cultivation (within-the-row weed killing, furrow reforming and hilling) simultaneously and properly. The combination cultivator was able to reduce herbicide consumption up to 66%.
Z Amiri, J Asghari, Kh Penahi Kord Aghari,
Volume 12, Issue 46 (1-2009)
Abstract

In order to determine the potato cultivars responses to irrigation regimes and fertilizer combinations, an experiment was conducted on Fereidan Research Farm, Isfahan Province in 2003. The trial was designed as split-split plot based on randomized complete block design with three replications. The cultivars (Arinda and Navita) were planted as main plots, and irrigated after 70, 140, 210 mm water evaporation from standard A pan surface that provided optimal watering, mild drought, and severe drought, respectively, as sub plots. Fertilizer combinations including of NPK + Zn, NPK+ Mn, NPK +Zn + Mn and NPK+ Manure were used as sub-sub plots. Results showed that the cultivar Arinda produced higher yield, mean tuber weight and total tuber number. By decreasing the amount of irrigation, the total yield and mean tuber weight were decreased. The highest amount of seed tubers (35-55 mm diameter) and marketable tuber sizes (diameter>35mm) and lowest amount of small size tuber numbers (diameter <35) were obtained in moderate drought. The use of NPK + Zn + Mn and NPK+ Manure produced the highest yield and mean tuber weight. Planting the cultivar Arinda with efficient irrigation is suggested in Isfahan province. Moderate drought is recommended for production of higher amount of seedy tubers. A combination of manure, Mn and Zn fertilizers are also suggested for potato farms of this district.
M. Toozandehjani, M. Kashefipour,
Volume 16, Issue 62 (3-2013)
Abstract

One of the usual ways to dissipate excess energy in the dam's downstream is hydraulic jump. Hydraulic jump is a rapidly varied flow, in which the flow conditions change from supercritical to sub-critical with a large amount of energy loss. In this research, a combination of two water jets in the form of overflow dam and underflow through a slot on the body of an ogee dam with the USBR standard was established in order to decrease the length and sequent depth in a hydraulic jump. In these experiments, the underflow from the slot was designed with three out passages of 0, 45, and 90 degrees in respect horizontal line. Six different discharge ratios were used for each slot and the effect of each experiment conditions on decreasing of the length and sequent depth of hydraulic jump was investigated. The results showed that the confluence of two jets with 45 degrees from the slot had the maximum effect on the reducing of the length of hydraulic jump and sequent depth, and when 26 percent of the total discharge passed through the slot as underflow, it caused the length of hydraulic jump to be reduced by 50 percent in comparison with the classic jump. This slot not only decreases the length and sequent depth of hydraulic jump but also the sediment behind the dam can be evacuated through it. Moreover, it increases the discharge coefficient.
V. Rahdari, A. Soffianian, S. Pormanafi, H. Ghayomi Mohammadi, S. Maleki, V. Pormardan,
Volume 23, Issue 4 (2-2020)
Abstract

In this study, to evaluate the rain- fed land capability in the west of Gavkhooni basin and Plasjn sub- basin, a multi- criteria evaluation method was used. First, by reviewing the literature and expert knowledge, proper data were determined. Criteria and constraint were standardized by Fuzzy and Boolean methods repeatedly and the criteria weights were determined using the analytic hierarchy process. Calculated weights showed that soil and climate criteria with 0.27 and 0.26 had the highest weights among other criteria. Criteria and constraints were combined by considering criteria weights and using the weighted linear combination method; then the rain- fed land capability model was prepared. By re- classing the prepared model, the rain- fed land capability map was produced in 6 capability classes. The results showed that 178430 hectares of the study area was related to very high and high rain- fed capability classes. To determine the rain-fed agriculture sustainability, rain- fed agriculture locations were determined in each land rain- fed capability map. The results showed that 19686 hectares of rain- fed areas were located in high and very high capability and 5999 hectares were the in lower classes.

S. H. Roshun, K. Shahedi, M. Habibnejad Roshan, J. Chormanski,
Volume 25, Issue 2 (9-2021)
Abstract

The simulation of the rainfall-runoff process in the watershed has particular importance for a better understanding of hydrologic issues, water resources management, river engineering, flood control structures, and flood storage. In this study, to simulate the rainfall-runoff process, rainfall and discharge data were used in the period 1997-2017. After data qualitative control, rainfall, and discharge delays were determined using the coefficients of autocorrelation, partial autocorrelation, and cross-correlation in R Studio software. Then, the effective parameters and the optimum combination were determined by the Gamma test method and used to implement the model under three different scenarios in MATLAB software. Gamma test results showed that today's precipitation parameters, precipitation of the previous day, discharge of the previous day, and discharge of two days ago have the greatest effect on the outflow of the basin. Also, the Pt Qt-1 and Pt Pt-1 Qt-1 Qt-2 Qt-3 combinations were selected as the most suitable input combinations for modeling. The results of the modeling showed that in the support vector machine model, the Radial Base kernel Function (RBF) has a better performance than multiple and linear kernels. Also, the performance of the Artificial Neural Network model (ANN) is better than the Support Vector Machine model (SVM) with Radial Base kernel Function (RBF).

V. Rahdari, A.r. Soffianian, S. Pormanafi, S. Maleki,
Volume 27, Issue 3 (12-2023)
Abstract

Industrial development is necessary to create employment and achieve welfare. Nevertheless, due to the important environmental effects of these uses, it is necessary to consider the environmental issues in industrial area land allocation. The current research used the multi-criteria evaluation method and the combination with fuzzy concepts to investigate the land capability for industrial development in the Plasjan sub-basin in the Zayandeh-rood river basin. Evaluation criteria were determined by literature reviewing and using experts' knowledge, and standard applying fuzzy method via proportional functions and weighted using the hierarchical method. The combined classification of satellite images prepared the land use and land cover map. Then, the standardized criteria were combined in the form of a weighted linear combination and the industrial development capability model was prepared for this area and classified into five land capability classes. The results showed that environmental considerations have the most weight with 0.23, and geological and soil texture criteria have the least weight with 0.06. According to the results, only 213 hectares of the region were allocated for industrial and mining use at the time of the study. In comparison, 2325 hectares of the region have very high industrial potential which shows the capability for increasing industrial areas. Also, the highest class of land capability was related to areas without the capability for industrial development with an area of 246375 ha, equivalent to 60% of the entire region, which shows the importance of conservation of the important functions of this region in water supply and ecological resources.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb