Search published articles


Showing 3 results for Concrete

J. Abedi Koupai, M. A. Fathi,
Volume 7, Issue 2 (7-2003)
Abstract

Rice husk, an agricultural waste, is produced about 100 million tons annually in the world and 0.5 million tons in Iran. Due to growing environmental concerns about disposal of these wastes, efforts are required to apply the wastes in industry. In this research, the mechanical properties of concrete incorporating rice husk ash (RHA) in sulfate environments (such as irrigation canals) were investigated and the increase in concrete strength was compared with control samples. In order to burn the husks at a controlled temperature to obtain a highly reactive pozzolanic RHA, a furnace was designed and built. The experiments included 405 samples of cubical (707070-mm) and cylindrical (50.8101.6-mm) concrete samples (105 samples for A, B and C treatments, respectively) which were stored in different ages (7, 28, 60, 180 days) under three different conditions (solutions of magnesium, calcium and sodium sulfates). The portions of RHA as cement replacement were 20 and 30 percents for B and C treatments. The results showed that the samples of concrete containing 20 percent RHA as cement replacement had higher compressive and tensile strengths in sulfate environments at 180 days compared with those of control concretes. The concrete samples containing RHA showed sharper gradients compared to control samples of up to 180 days under sulfate conditions. The best portion of RHA in concrete was determined to be 20 percent by weight.
J. Abedi- Koupai , S. S. Eslamian1, S. A. Gohari , S.a Gohari , R. Khodadadi ,
Volume 14, Issue 54 (1-2011)
Abstract

Channel lining is essential to increase resistance against scour, reducing water losses and as a result increase water conveyance efficiency. Since the canal lining has significant costs, selection of type of lining must be made with great care and with considering engineering properties. One of the conventional lining for water conveyance cannel is concrete lining. Because of advantages of concrete lining including durability (about 40 years) and low maintenance costs, this type of lining is the best option in many regions, however the construction expenses is high. So far many researches have been published about the types and the durability of concretes containing synthetic pozzolans. Due to high production of wheat in our country, nano particles of wheat ash sheath (NPWAS) were used. In this study the mechanical properties of concrete (compressive strength, tensile strength and durability) incorporating nano-particles of wheat ash sheath were investigated. The results showed that the compressive and tensile strength of samples incorporating 20 percent of NPWAS has not statistically significant difference (P<0.05) with the values of tensile and compressive strength of control samples. Therefore, the optimum replacement percentage of NPWAS was 20 percent by weight of cement. Moreover, results of durability of concrete samples showed that concrete containing 20 percent NPWAS were more durable than control samples in the magnesium sulfate solution. NPWAS with having 90.56 percent of silicon dioxide, high pozzolanic activity and ability to perform substantial chemical reaction with calcium hydroxide would decrease porosity and increase resistance of concrete.
M. Javaheri Tehrani, S. F. Mousavi, J. Abedi Koupai, H. Karami,
Volume 24, Issue 2 (7-2020)
Abstract

In the last few decades, the use of porous concrete to cover the sidewalks and pavements as an interface to collect the urban runoff has been increased. This system is economically more efficient than other runoff-pollution reduction methods. To design a runoff control system and reduce its pollution, it is necessary to determine the hydraulic and dynamic properties of the porous concrete (with and without additives). In this research, the effects of cement type (2 and 5), water to cement ratio (0.35, 0.45 and 0.55), fine grains percent (0, 10 and 20%), the type of additive (pumice, industrial pumice, perlite and zeolite), and the added additive percent (5, 10, 15 and 20%) on the physical properties of the porous concrete (porosity, hydraulic conductivity and compressive strength), each with three replications,  were  investigated using robust design. Qualitek-4 software was also used to discuss the results. The results showed that to obtain the highest porosity in the mixing scheme of the porous concrete, no fine grains, cement type 2 and 15% industrial pumice should be used, and water to cement ratio should be 0.35. Also, the water to cement ratio of 0.55, 0% fine grains, type 2 cement and 15% industrial pumice resulted in the highest value of hydraulic conductivity in the porous concrete. Finally, the water to cement ratio of 0.55, 20% fine grains, type 2 cement and 5% zeolite led to the maximum compressive strength. In general, it was not possible to reach a logical conclusion in this research with the least costs without employing the robust design.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb