Showing 3 results for Cone Index
M. R. Mosaddeghi, A. Hemmat, M. A. Hajabbasi,
Volume 7, Issue 1 (4-2003)
Abstract
Soil tilth is crucial to seedling emergence, plant growth, and crop yield. Soil tilth of unstable soil is very susceptible to change. Internal forces originating from matric suction can change soil physical properties. A laboratory study was conducted on pots of a surface silty clay loam soil of Khomeinishahr series (fine-loamy, mixed, thermic Typic Haplargids, USDA), located in Research Farm of Isfahan University of Technology. Soil surface subsidence, bulk density, cone index, and tensile strength were measured after first flood irrigation. Results showed that the seedbed (0-20 cm) with a bulk density of 1.2 Mg.m-3 will be changed to a massive soil with high values of bulk density, cone index, and tensile strength after soil wetting. Slaking, slumping and coalescence of the soil caused soil surface to subside about 1.5 cm in 20 cm soil layer. After irrigation, cone index and tensile strength increased abruptly with decreasing of moisture content. It is shown that the dominant source of strength (cone index and tensile strength) gain during drying is the effective stress due to matric suction. In the absence of external loads, physical state (tilth) of the soil returned back to the original state. Therefore, soil slaking and slumping and rearrangement of particles along with the internal forces are the factors leading to soil hardness.
H. Bayat, A.a. Mahbobi, M.a. Hajabbasi, M.r. Mosaddeghi,
Volume 11, Issue 42 (1-2008)
Abstract
Tillage is one of the important managing factors that can destroy or improve soil structure. Soil structure is affected by the machines and shape of the wheels. Field experiments were conducted at Hamadan Agricultural Research Station on a coarse loamy mixed mesic Calcixerolic Xerocrepts soil to measure and evaluate the effects of tillage and wheel-induced compaction on selected soil physical properties. Treatments included tillage methods (Moldboard Plow and Chisel Plow, (MP, CP)) performed using three customary tractors in Iran [John Deer (J), Romany (R) and Massey Ferguson ( MF) ]. Traffic zone and non traffic zone were other treatments. A split-plot design with three replications was used in a completely randomized arrangement of treatments. Soil samples were taken at the end of wheat growth season in traffic and non- traffic zone and from four layers and compared for bulk density (BD), cone index (CI), and mean weight diameter (MWD). The influence of both tillage methods on BD in most soil depths was not significant, meanwhile, BD was higher in the deeper layers. Wheel traffic did not affect BD significantly, but its effect decreased by increasing the depth. Commonly, conservation tillage increased structural stability as evaluated by MWD. Cone index illustrated the same trend as for BD, with some variation because of it higher sensitivity, so it was significantly was increased in CP rather than in MP for the traffic zone. Such a difference was not observed in non-traffic zone. The CI was also significantly increased in traffic zone compared with non-traffic zone. J significantly increased CI in two first layer in comparing with MF, but there was not significant difference between J and R. The MWD was increased by chisel plow in non-traffic zone and this increment was significant in fourth soil layer (22.5- 30 cm). Wheel traffic caused the increase of MWD in the second layer and significant difference was not observed in other layers. Overall, R caused less destruction in soil structure and tillage methods changed some of soil physical properties.
A. Veisitabar, A. Hemmat, M. R. Mosaddeghi,
Volume 19, Issue 72 (8-2015)
Abstract
Considering soil compaction problem in sugarcane fields due to using heavy harvester and haulout equipment under unsuitable moisture conditions, this research aims to assess soil compaction in sugarcane fields located in Da'balKhazaei Plantation unitofSugarcane Development and By-product Company, Ahvaz. Undisturbed soil samples from the furrow (wheel tracks) were collected for measuring soil water content and bulk density. Considering the changes in soil texture of sugarcane fields, for expressing the degree of soilcompactness, in addition to soil bulk density (BD), relative bulk density (BD divided by reference BD) was also determined. The change in soil mechanical resistance with depth was determined by a cone penetrometer. Results showed that most of soil BD values measured in the sugarcane fields were in the range of small root development scale (high limitation). Comparingthe calculated RBD values with optimum value (0.85), it was observed that most of the values were higher than the optimum values recommended for root growth. This shows excessivesoil compaction in the sugarcane fields. The values of cone indices measured in soil profiles indicated that most of the values were higher than either limiting (2 MPa) or critical (3 MPa) values for root growth. Therefore, for improving soil physical fertility and achieving sustainability in crop production, management of farm machinery traffic in sugarcane fields, especially at the harvest time, needs to be reconsidered.