Search published articles


Showing 6 results for Contamination Factor

M. Barzin, H. Kheirabadi, M. Afyuni,
Volume 19, Issue 72 (8-2015)
Abstract

Soil pollution and accumulation of heavy metals in soils and crops are the most important bioenvironmental problems that threaten the life of plants, animals and humans. This study was conducted to explore contamination of heavy metals in soils of Hamadan province. A total of 286 composite surface soil samples (0-20 cm) were collected thoroughout the province. After preparation of the samples, the total contents of Zn, Pb, Cu, and Ni in soil samples were extracted using HNO3. Total contents of heavy metals were measured by ICP. Contamination factor results showed that most samples were moderately polluted and contamination factor for lead was highly polluted. Interpolated distribution map of contamination factors (CF) and pollution load index (PLI) of the heavy metals were prepared using GIS. The overlap of CF and PLI maps with geology and land use maps indicated that the concentrations of Ni, Pb, Zn, and Cu have been controlled by natural factors such as parent material, but agricultural activities according to excessive consumption of animal manure and chemical fertilizers can increase most of these elements in soil.
F. Saberinasab, S. Mortazavi,
Volume 22, Issue 1 (6-2018)
Abstract

Today, the growth of population, the excessive growth of cities and subsequently, the industries development in all parts of the planet are evident. Such development leads to the entrance of chemical martials with various compounds, particularly heavy metals, in aquatic ecosystems. In this study, the contamination of the sediments around the Mighan wetland basin with heavy metals such as lead, zinc, copper and nickel was investigated using CF indexes (contamination factor), IGeo geo-accumulation indexes, and IPOLL sediment contamination severity. The results indicated a high concentration of copper and nickel metals, in comparison to zinc and lead metals, in the studied area. Also, regarding the location of sampling stations and their proximity of the industries around the wetland, the comparison of the results related to the measured metal concentration and the sediment quality indices, indicated a high concentration of the pollutants under examination in the southern part of the wetland, thereby emphasizing the need to control the pollutants in the wetland.


H. Babaei, N. Ghanavati, A. Nazarpour,
Volume 22, Issue 3 (11-2018)
Abstract

Dust particles are suspended particles created from various natural and anthropogenic sources. Dust particles contain toxic metals, such as mercury (Hg), which can have harmful effects on the human health. In this study, to investigate the contamination level of Hg in the street dust in Ahvaz, 95 dust samples were collected from the pavements in the main streets. The concentration of Hg in the collected samples was determined by the atomic absorption method (ASS). The contamination level was estimated based on indicators such as contamination factor (Cf), enrichment factor (EF), geo-accumulation index (Igeo) and ecological risk index (Er). The concentration value of mercury ranged from 0.02 to 8.75 mg/kg with an average of 2.53 mg/kg. The results of pollution indicators showed that the level of Hg contamination in the street dust of Ahvaz was a high level of contamination. In addition, the results of ecological risk assessment indicated that the ecological risk of Hg in the study area was very high. Spatial distribution pattern of Hg concentration showed that in areas with high population density, high traffic volume and industrial activities, there was a high pollution level of Hg.

F. Mehri Yari, H. Pirkharrati, Kh. Farhadi, N. Soltanalinezhad, F. Naghshafkan,
Volume 24, Issue 1 (5-2020)
Abstract

Soil pollution by heavy metals is a serious environmental problem that threatens the human health. The present study was carried out to investigate and detect the contamination of heavy metals of arsenic, copper, lead, zinc and iron due to human and natural activities in the sediment of lake bed and the surface soils of the eastern part of Urmia Province, West Azarbaijan Province. A total of 20 soil samples and surface deposition from the depths of 0 to 30 cm were collected randomly from the studied areas. After preparing the samples, extraction was carried out to determine the concentration of the heavy metals in the soil by using hydrochloric acid and nitric acid, and the total concentration of metals was measured using ICP-OES. The results of the calculation of the contamination factor showed that copper, iron, zinc and lead in the class of low and medium pollution and arsenic in 65.5% of the samples were very high in the class. The high concentrations of copper, lead and zinc contamination in the margin of the city and the contamination of arsenic in the lake bed were observed. The analysis of the contamination factor maps and contamination index with land use and geological map showed that copper, lead and zinc were mostly affected by human activities and arsenic influenced by the maternal materials in the region.

F. Moradian, N. Ghanavat, A. Nazarpour,
Volume 24, Issue 3 (11-2020)
Abstract

Dusts contain heavy metals such as Pb, Zn, Cu, Cr, Cd and As that can threat human's health and environment. Therefore, the spatial distribution of heavy metals concentration and soil pollution monitoring and environmental quality protection seem to be essential. To assess heavy metals pollution level in Ahvaz street dust, 115 street dust samples were collected from main pedestrians. The samples were analyzed by Atomic Absorption (AAS). The pollution level was estimated based on the geo-accumulation index (Igeo), contamination factor (CF) and the enrichment factor (EF). The average concentration values of Pb, Zn, Cu, Cr, Cd and As were found to be 197.6, 150.1, 179.7, 101, 5.6 and 14.2 mg/kg, respectively. Pearson's correlation coefficient also indicated that Pb, Zn, Cu and Cr had a significant correlation showing similar possible anthropogenic sources. On the other hand, Cd and As showed a lower correlation with other metals, indicating that they belonged to the geogenic sources. The results of contamination factor, enrichment factor and geo-accumulation index also indicated that Pb, Zn, Cu and Cd had a high contamination level.  Also, areas with high population density, heavy traffic volume, and industrial activities exhibited a high level of heavy metals contamination.

S. Dehghani, M. Naderi Khorasgani, A. Karimi,
Volume 26, Issue 3 (12-2022)
Abstract

Knowledge of the distribution of heavy metal concentrations in different components of soil particles is significant to assess the risk of heavy metals. The objective of this study was to evaluate some pollution indices and spatial variations in their estimation in different components of soil particle size fractions (<2000 and> 63 μm) in the Baghan watershed in the southeast of Bushehr province with an area of about 929 square kilometers. The location of 120 surficial composite soil samples (0-20 cm) was determined by using the Latin hypercube method. Soil pollution was assessed using geochemical indices of contamination factor (CF) and pollution load index (PLI). The kriging method was used in the Arc GIS software to interpolate the spatial variations of CF and PLI. Based on the results, the CF displayed the particles in the size < 2000 microns compared to all metals in moderate pollution conditions (1≤CF <3) and with the fineness of soil particles (particles with a diameter <63 microns) concerning to Cd metal shows significant contamination status and moderate pollution with other metals, respectively. CFZn, CFCu, and CFFe in particle size <2000 microns and CFPb in finer class were fitted with a spherical model and other metal contamination coefficients with an exponential model. CFCd and CFFe have the highest impact ranges at <2000 and < 63 microns, respectively. The results of this research confirm that corrective operation is needed to monitor cadmium status in the studied area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb