Showing 9 results for Cultivation
A. Ahmadi Iikhchi, M. A. Hajabbassi, A. Jalalian,
Volume 6, Issue 4 (1-2003)
Abstract
Cultivating rangeland to be shifted to crop land farms commonly causes soil degradation and runoff generation. This study was conducted to evaluate the cultivation effects on runoff generation and soil quality. The experiment was performed in a rangeland and a 40-year cultivated land located at two slope positions (back slope and shoulder) of a hillside in Dorahan, Chaharmahal & Bakhtiari Province. A 60±5 mm.hr-1 rainfall intensity was simulated by a rainulator. Organic matter, mean weighted diameter, saturated hydraulic conductivity, collected runoff and sediments were measured. The differences between the means were tested using T-test. Results showed 35, 53 and 8% increases in the organic matter, mean weighted diameter, and saturated hydraulic conductivity in back slope, respectively. The increases in these parameters in shoulder position were 39, 60 and 33%. The values for runoff and sediments in back slope were 3 and 8 times greater than in other similar positions while the values in the shoulder position were 11 and 55 times greater than the same values in other positions.
Gh. Riazi,
Volume 8, Issue 1 (4-2004)
Abstract
Germination of strawberry seeds from self- and cross pollination of 4 commercial cultivars were evaluated under mist and in vitro cultures. The study was conducted in McGill University in Quebec, Canada, during 1994 and 1995. Self-pollination of Chambly and Redcoat cvs., and cross pollination of Oka × Chambly as well as Redcoat × Veestar and their reciprocals were used. At maturity, fruits were harvested and their seeds were separated. A sample of each seed lot was grown in greenhouse under mist condition and in vitro using MS medium. In the latter, both intact and cut seeds were used. Germination index (containing germination velocity and rate) was used as a criterion for germination evaluation. The results showed that there was no sign of germination in intact seeds 40 days after cultivation on MS medium however, cut seeds containing plantlets started germination 2 days after cultivation and obtained 90 percent of the germination after one week of culturing on the medium. Germination of seeds under mist condition began 15 days after sowing and showed a minimum of 55 to 87 percent in different genotypes till the end of the experiment period (60 days). Germination index (GI) under this condition ranged from 15.4 to 26.1. GI comparison of seeds under in vitro and mist conditions indicates a lower germination rate in different genotypes under mist condition. This study also showed that the rate of germination in strawberry seeds could range from 0 to 100 percent depending on genotype and type of treatment used. The best treatment for a synchronized and rapid germination was found to be using cut seeds containing the plantlets on MS medium.
M. Pishgir, S. Jafari,
Volume 18, Issue 69 (12-2014)
Abstract
This study was done to compare K+ and NH4+ fixation in different agricultural systems in Khuzestan province. Soil samples were collected from Shushtar and Abadan. Samples were collected from depths of 0-30 and 30-60 cm in sugarcane, multi cropping, palm and uncultivated land. Then, 0-50-100-200-400-600-800-1000 mg kg-1 K+ or NH4+ concentrations were added to 0.5 gram of clay separated from these soil samples. These clay samples were kept for 24 h at room temperature. Then, they were extracted with 0.5 M magnesium acetate, and K+ and NH4+ were determined by flame photometer and micro diffusion methods, respectively. Fixed K+ or NH4+ was determined from added and extracted cations. Also, XRD studies were done in some samples. Kaolinite, palygoreskite, illite, chlorite, smectite and quartz were identified by XJRD. Statistical analysis showed that K+ or NH4+ fixation and rate were increased by increasing the concentration. Maximum K+ or NH4+ were fixed in surface layer’s clay in Shushtar multi cropping and Abadan Palm cultivation. The results showed that K+ and NH4+ fixation were increased by increasing the concentration. But, under increasing concentration for a cation, fixation decreased for others and vice versa. NH4+ fixation was more than K+. This may be due to smectite clay mineral in these samples. Smectite group tend to cause NH4+ fixation more than K+. These results can be applied for K+ or NH4+ fertilizers management.
N. Ganji Khorramdel, M. Abdoos, S. M. Hoseini Mooghaari,
Volume 23, Issue 3 (12-2019)
Abstract
Due to water use increasing, attention to optimal water resources allocation is needed. In recent decades, the use of intelligent evolutionary methods for optimization of water allocation was focused more by researchers. The aim of this study is to development on water resources planning model that determined the proper cultivation, optimal exploitation of groundwater and surface water resources although water allocation among crops is a way to minimize the adverse effects of dehydration and increase its revenue. In this study, for maximizing profits, estimating crop water requirements at different periods to optimize the management of cropping patterns and irrigation management in cultivation in Varamin irrigation network using a new evolutionary algorithm was called the water cycle. Then for validation of this method is that a new approach and ensure the integrity of its performance Its results are compared with a genetic algorithm model and linear programming as our base (R2=0.9963). The results showed that the area cropping pattern was not optimal and the area under cultivation of crops such as wheat, barley, tomatoes, Bamjan, melon, alfalfa reaches zero and the new paradigm of the largest area under cultivation to industrial goods and then was assigned cucumbers. While our revenues have increased about 11 percent. In addition to amount of water in different months remain in the network that can be used for many that such as injection into underground aquifers or other crops based on the amount of water available.
H. Sadoghi, T. Rajaee, N. Rouhani,
Volume 24, Issue 4 (2-2021)
Abstract
Identification and investigation of changes in the area under cultivation of various crops seem to be essential for the management supply of crop production. In this study, r to identify and investigate change of the area under cultivation in major crop Hoseynabade Mishmast region in Qom province, we used the time series images of OLI and ETM sensors of landsat 8 and 7satellites, according to the crop calendar of this region. By using the vegetation index (NDVI) in the decision tree algorithm, the thresholds of this index were adjusted according to the major crops of this region; then a map of the cultivation pattern of the crop of this region was prepared. In order to evaluate the results, the statistics of the provinces agricultural jihad were used during 2005, 2009, 2014 and 2019 crop years. The results showed that by using the threshold of NDVI index, crops in this region in 2005 included wheat and barley and alfalfa, and their areas had an error of 17/1 and 6/1 percent in comparison with the statistics of agricultural Jihad, respectively; in 2009, wheat and barley, alfalfa and corn had an error of 0/5, 9/6 and 0/1 percent. Also, in 2014, wheat and barley, alfalfa, corn and sophie crops had an error equal to 4/9, 0.4, 11/4 and 2/4 percent, and the same crops in 2019 had an error 0/04, 11/6, 1/4 and 17/5 percent; that error was not significant. According to the results, the appropriate efficiency NDVI index in estimating crop cultivation area was determined by their phenology. Also, in 2009 and 2014, corn and sophie crops were added to the regions crops, and the area under crops cultivation in 2019 was increased, as compared to 2014.
A.r. Tavakoli, H. Hokmabadi, A. Naderi Arefi, A. Hajji,
Volume 25, Issue 4 (3-2022)
Abstract
Due to limited access to water, it is necessary to determine the comparative advantage of crops and horticultural products in different parts of the province and identify products that lack the desired productivity. Then, find ways to improve water productivity or replace products with higher comparative advantage with low-yield products. Based on this, the crop and economic productivity index of the province's agricultural and horticultural products under surface irrigation systems was determined. Based on the results of gross economic productivity of horticultural products, pistachio with 48690 Rials per cubic meter had the highest economic productivity, and grapes with 30220 Rials per cubic meter (62% of pistachios) was in second place. In addition, water quality for pistachios can never be generalized for grapes and other crops, and this is a tremendous advantage for pistachios that low-quality water resources can also be used. The lowest gross economic productivity of water for barley, alfalfa, and wheat is equal to 3790, 3990, and 4570 Rials per cubic meter, respectively. The study of fodder corn shows that the net profit from the cultivation of this crop in the surface irrigation system is equal to 51.78 million Rials per hectare and its net profit in the strip drip irrigation system (tape) is equal to 110.87 million Rials, which it has a 2.14-fold increase compared to the conventional irrigation method. The comparative advantage of horticultural products was higher than that of crops, and the replacement and development of orchards instead of some crops is recommended as a solution. In addition, solutions that can be recommended to improve the productivity index include the use of a drip irrigation system (tape) for crops (fodder corn, tomatoes, summer crops, and potatoes) and the use of drip irrigation (normal, subsurface, and subsurface modified drip) for horticultural products. Examination of practical experiences of using tape irrigation system for wheat and barley showed that this method has not improved the agricultural and economic productivity index, which indicates the lack of comparative advantage of wheat and barley cultivation in Semnan Province even with tape irrigation system.
H. Jafarinia, A. Shabani, S. Safirzadeh, M.j Amiri,
Volume 27, Issue 2 (9-2023)
Abstract
Due to the climatic conditions of Iran, increasing water scarcity, and the effect of drought stress on the efficiency of irrigation water consumption and chemical fertilizers application, an experiment was conducted to investigate the effect of irrigation intervals (6, 9, and 12-day intervals), different levels of nitrogen fertilizer (200, 300, and 400 kg urea per hectare) and cultivation methods (on-ridge or heeling up and in-furrow) on yield and productivity of sugarcane as a factorial design based on randomized complete block design in 3 replications at Hakim Farabi Agro-Industry Company in Khuzestan province. The results showed that the maximum (106.73 tons/ha) and minimum (59.10 tons/ha) sugarcane yields were observed in 9-day and 12-day irrigation intervals, respectively. Also, the highest sugarcane yield (99.89 tons per hectare) was obtained in the treatment of 400 kg urea per hectare and the in-furrow planting method resulted in a higher yield compared to the on-ridge planting method. The highest water productivity in sugarcane stem yield and sugar production with 3.55 and 0.34 kg per cubic meter of applied water, respectively, was obtained in a 9-day irrigation interval. A significant increase in water use efficiency in sugarcane stem yield was observed in 400 kg urea/ha compared to the other two fertilizer levels. However, there was no significant difference in water productivity of sugar yield between different fertilizer treatments. The results showed that 6 and 9-day irrigation intervals in most of the studied traits were not significantly different. Therefore, using a 9-day irrigation interval is suggested in the studied area when the sugarcane cultivation area is high and the amount of available water is limited. In-furrow planting method can also be effective in reducing water consumption. Therefore, deficit irrigation and proper nitrogen fertilizer consumption can be very effective in sugarcane cultivation.
S. Aghaei, M. Gheysari, M. Shayannejad,
Volume 27, Issue 2 (9-2023)
Abstract
Due to water scarcity, it is impossible to utilize all irrigated cropland in arid and semi-arid areas. Therefore, dense cultivation with a drip irrigation system that delivers water directly to the plant's root zone is an appropriate choice to enhance water productivity. The objectives of the present study were to compare wheat yield and water productivity under two different water distribution patterns in the drip-tape irrigation system and surface irrigation in full irrigation and deficit irrigation levels. The experimental treatments consist of two irrigation systems (drip-tape (DT), and surface irrigation (SU)), and three different irrigation levels (a full irrigation level (W1), two deficit irrigation levels, the irrigation interval twice, and the same irrigation depth of W1 level (W2), applied half of the irrigation depth of W1 level at the same time (W3)). The SU was implemented in place with 100% efficiency to avoid runoff. The yield in full irrigation level in DT was 5338.4 kg/ha and in SU was 5772.8 kg/ha. Applying deficit irrigation in two irrigation systems has different effects due to various water distribution patterns. In the DT, the most yield reduction was in W2, and in SU was in W3. The highest water productivity in DT was observed in W3 with a 1.44 kg/m3 value. The highest water productivity in SU was observed in W2 with a 1.46 kg/m3 value. For each irrigation system, some type of deficit irrigation management is optimal.
S. Najmi, M. Navabian, M. Esmaeili Varaki,
Volume 27, Issue 3 (12-2023)
Abstract
The increasing need for water resources and controlling the discharge of wastewater into the environment shows the necessity of wastewater treatment. Green methods such as constructed wetlands and phytoremediation use biological processes in the environment for wastewater treatment. Considering the effect of cultivated constructed wetland performance from wastewater quality and climatic factors, the objective of this study was to evaluate the performance of hybrid and subsurface vertical and horizontal wetlands to improve the biological and chemical oxygen demand of the wastewater treatment plant in Rasht City. The effect of Phragmites australis and Typha latifolia plants on the treatment performance was investigated. Wastewater retention time in wetlands varies from monthly in winter and weekly in spring and summer. The results showed that the performance of wetlands in reducing biological oxygen demand (BOD) was more than chemical oxygen demand (COD). Plants improved the performance of the wetland by more than 50%, but no significant difference was observed between the performances of the two plants. The arrangement of the plant's cultivation was not effective in the amount of biological and chemical oxygen removal. The hybrid wetland was able to improve the wastewater quality twice as much as the vertical wetland. Comparing the concentration of the effluents from the wetlands with the standards showed that the effluents from the hybrid wetlands could only be used for agricultural consumption.