Search published articles


Showing 7 results for Deficiency

R. Hajiboland, S.y. Salehi, T. Aghajan-Zadeh, M. Abhari, E. Nazifi,
Volume 11, Issue 1 (4-2007)
Abstract

Zn deficiency is one of the most important nutritional disorders after macro-nutrients in rice. There are considerable genotypic differences among rice genotypes in response to Zn deficiency. Determination of such differences and introduction of efficient genotypes could lead to significant reduction of fertilizer use for rice production. In this research, some of the most frequently cultivated rice genotypes in Northern Iran, were compared for their tolerance to Zn deficiency in a field (11 cultivars) and hydroponic (16 cultivars) experiment. Four levels of Zn fertilizer were used in field experiment including 0 (control), 25, 50 and 100 kg ha-1 and three different activity of Zn in chelator-buffer experiment including 130 (control), 23 and 5 pM. Experiments were conducted using complete randomized block design and data was analyzed using two factorial analysis of variance including Zn level and genotypes. In addition to yield components in the field study and dry matter production in the hydroponic culture medium, concentration of Zn was also determined in shoot, root and seed. The comparison of all yield components showed that the cultivar Onda was the most Zn-inefficient (susceptible to Zn deficiency) and Khazar was the most Zn-efficient (tolerant to Zn deficiency) genotypes under field conditions. In hydroponic experiment, cultivars Fajr, Tarom Hashemi and Onda were determined as the most Zn-inefficient and Shafagh, Amol and Mianeh were recognized as the most Zn-efficient genotypes. The most significant response to Zn fertilizer, in terms of Zn accumulation in seeds, was observed in Nemat and Tarom Deilamani. In contrast, Cadoos accumulated Zn mostly in straw. Results of our experiments introduced not only the genotypes with the highest yield on soils low in available Zn, but also genotypes with the highest Zn accumulation in seeds in response to Zn fertilizers which are important for human nutrition.
S.h. Lack, A. Naderi, S. A. Saidat, A. Ayenehband, G.h. Nour – Mohammadi, S.h. Moosavi,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to study the effects of different levels of irrigation, nitrogen and plant population on yield, yield components and reserved dry matter remobilization of seed corn (SC. 704 hybrid) a research was conducted at the experimental field in Khuzestan Natural Resources and Agricultural Science University in summer, 2004. This research was made based on three split-plot field experiments, RCBD. Each of the irrigation treatments implemented separately in each experiment have been as follows: Optimum irrigation, Moderate stress and Severe stress (irrigation after drainage 50%, 75% and 100% of available water based on 70%, 60% and 50% of field capacity, respectively). In each experiment three nitrogen levels consisting of 140(N 1 ), 180 (N 2 ) and 220(N 3 ) Kg N ha-1 were applied in main plots and subplots which consisted of three plant populations (D 1 =6, D 2= 7.5 and D 3= 9 plant m-2). There were three replications for each experiment. The results of the combined analysis of variance indicated that the effect of water deficiency stress, nitrogen and plant population on grain and biological yield was significant. With increasing severity of drought stress, the grain and biological yield decreased. The maximum grain yield was estimated to be 1017.04 gm -2 which was related to optimum irrigation treatment. Grain yield reduction was mainly due to reduction of grain per ear and 1000 seed weight. The increase of nitrogen consumption caused an increase in grain yield. The positive effect of nitrogen application on grain yield considerably decreased as a result of the increased water deficiency in soil. The response of grain yield to plant population was positive. The contrary to interaction effects of irrigation and nitrogen, and irrigation, nitrogen and plant population, the interaction effects of irrigation and plant population and also nitrogen and plant population on grain yield were significant. The results indicated that the difference between different levels of irrigation in the case of dry matter remobilization rate was significant. The least and the highest remobilization rate of reserved dry matter was related to optimum irrigation and drought moderate stress treatment, respectively. The efficiency and contribution of remobilization in grain yield increased in response to increasing severity of drought stress, but these traits significantly reduced as a result of nitrogen consumption. Remobilization rate and contribution of reserved materials to grain yield in the highest density (D3) were significantly more than other densities. According to the results of this study, under drought stress conditions, the decrease of inputs consumption, in addition to the decrease of costs, will be followed by the increasing efficiency use of the resources.


M Mahbod, Alireza Sepaskhah, Marzih Monfared,
Volume 13, Issue 49 (10-2009)
Abstract

Optimum management of water use in agriculture results in higher cultivated areas or enhances the share of water for municipal and industrial uses leading to economic development of a country. One of the effective methods in optimum water management is irrigation scheduling by using models which simulate water content in soils. In this study, a previously prepared model for irrigation water scheduling was modified to calculate daily effective rain, soil water content and deficiency. The model was applied for winter wheat field in Bajgah area using 13 years of local meteorological data. Furthermore, the effect of water storage in the soil profile on the amount and frequency of irrigation was examined. This model was written in Visual Basic.Net programming software. The model was run under two assumptions: 1) the effective rain compensates water deficiency of soil down to daily root depth and the excess water is assumed as deep percolation (case I) 2) the effective rain compensates water deficiency of soil down to maximum root depth and the excess water is assumed as deep percolation (case II). The results show that the amount and the frequency of irrigation in case 2 is less than case 1. Average amount and number of irrigation events decreased from 706.8 (mm) and 8 in case I to 569.2 and 6.4 in case II. The average relative percentage of effective rain increased from 45.2 % in case I to 76.9% in case II. The effective rain is 108.9 mm and the amount and number of irrigation events is 9 and 757.7 mm, respectively in case I (at probability level of 80%). The effective rain is 236.7 mm and the amount and number of irrigation events is 636.9 mm and 7.2, respectively in case II (at probability level of 50%). The effective rain is 165.6 mm and the amount and number of irrigation events is 712.6 mm 8, respectively in case I. The effective rain is 292.1 mm and the amount and number of irrigation events is 545.1 and 6, respectively in case II.
A. H. Khoshgoftarmanesh, E. S. Razizadeh, H. R. Eshghizadeh, H. R. Sharifi, Gh. Savaghebi, D. Afiuni, M. Tadayonnejad,
Volume 15, Issue 58 (3-2012)
Abstract

This study was conducted in Rudasht Research Farm Isfahan, to evaluate tolerance to iron (Fe) deficiency of 30 spring wheat genotype, using split plots in a randomized complete block design with three replications. Main plot consisted of two Fe levels (0 and 20 kg Fe ha-1 applied as FeEDDHA at planting and beginning of vegetative growth). Grain yield increased by 14% following the application of 20 kg Fe ha-1 as FeEDDHA. Application of Fe significantly increased grain yield of all wheat genotypes except for Rushan. The result indicated that Mean Productivity (MP), Geometric Mean Productivity (GMP) and Stress Tolerance Index (STI) were the most suitable indices for identifying and selecting Fe-deficiency tolerant wheat genotypes. By using both treatments with and without added Fe, grain yield showed significant (P < 0.01) positive correlation with MP, GMP and STI. The STI could divide the studied wheat genotypes in different groups based on both their response to fertilization and grain yield potential. Therefore, the STI was the best index to identify Fe deficiency tolerant genotypes. Based on the three indices, Ghods and Falat genotypes were the most tolerant and sensitive genotypes to Fe deficiency, respectively
V. Jahandideh Mahjen Abadi, M. Sepehri, A.h. Khoshgoftarmanesh, H. R. Eshghizadeh, D. Rahmani Iranshahi,
Volume 19, Issue 71 (6-2015)
Abstract

Zinc deficiency is the most widespread micronutrient disorder in the production of wheat (Triticum aestivum L.) and other cereal crops. An experiment was conducted in greenhouse, in 2013, using the sterile sand-perlite (2:1 v/v), to study the effects of two beneficial microorganisms on growth and nutritional status of wheat (Nicknejad cultivar). The study was arranged as factorial in a completely randomized design with three replications. The experimental factors consisted of Piriformospora indica (E0: Uninoculated E1: Inoculated), Pseudomonas putida (E0: Uninoculated E1: Inoculated) and Zinc (Zn0: 0 Zn1: 2µM ZnSO4 ). The results showed that inoculation by P. putida increased shoot dry weight at both levels of zinc, but this increase was observed for root dry weight only without zinc application. The iron concentration of shoot was decreased as a result of inoculation by P. putida at both levels of zinc. However, P. indica inoculation increased iron concentration in zinc application, but had no significant effect without zinc application. At both levels of zinc, the highest P, Zn, chlorophyll a and b concentrations were achieved by inoculation with P. indica. Inoculation by P. putida reduced P concentration at both levels of zinc but it reduced Zn, chlorophyll a and b concentrations only with zinc application. The results of this research showed that despite negative effect of P. putida on nutrient uptake, inoculation by P. putida and/or P. indica plays an important role in the promotion of wheat growth in zinc deficiency conditions.


M. J. Asadollahzade, A. H. Khoshgoftarmanesh, M. Sepehri,
Volume 21, Issue 4 (2-2018)
Abstract

Iron (Fe) and zinc (Zn) deficiency is common in wheat growing areas of the world particularly in calcareous soils. Soil application of chemical fertilizers is considered as a cost-effective and easy approach to combat micronutrient deficiency. However, due to economic, environmental, and agronomic constrains, efficiency of soil fertilization is low in most calcareous soils. Therefore, finding proper and effective approaches to improve fertilizer use efficiency and/or soil availability of metal nutrients is of great importance. This research was performed to investigate the effect of endophyte fungus Piriformospora indica and Zn-sulfate application on root and shoot dry matter yield and uptake of Fe and Zn by wheat. The experiment was set up in a completely randomized factorial design; each treatment contained three replicates. Two wheat cultivars (Triticum aestivum L. cvs. Durum and Rushan) were exposed to two Zn fertilizer rates (0 and 15 mg/kg ZnSO4.7H2O) and were inoculated with and without P. indica. Results showed that inoculation with P. indica increased root and shoot uptake of Fe (25 and 27%, respectively) and Zn (46 and 26%, respectively). In general, inoculation of roots with P. indica resulted in significant increase of shoot and root dry matter yield and uptake of Fe and Zn by both studied wheat cultivars. Infection of wheat roots with P. indica seems to be an effective and environment-friendly approach to improve Fe and Zn uptake in calcareous soil; although further research is needed to clarify all aspects of this approach

R. Mousavai, M. Rasouli Sadaghiani, E. Sepehr, M. Barin,
Volume 27, Issue 1 (5-2023)
Abstract

can provide useful information about P adsorption and the factors affecting it. A batch experiment was performed with phosphorus concentrations (0 to 35 mg/L) in two soils with different electrical conductivity (EC) (2 and 15 dSm-1) by a variety of biochar treatments including simple apple-grape biochar (BC), rock phosphate- biochar (BC-RP), enriched-biochar (BC-H3PO4-RP), enriched-biochar (BC-HCl-RP), triple superphosphate (TSP), and control (Cont). The results indicated that phosphorus sorption capacity varied between the soils. Biochar treatments were effective in reducing the phosphorus adsorption of both soils. Due to BC-H3PO4-RP and BC-HCl-RP treatments, the maximum phosphorus adsorption of soils decreased in S1 soil by 14 and 23 % and in S2 soil by 26 and 19%, respectively. Also, the use of these treatments decreased the parameters of Langmuir absorption intensity (KL) of S1 soil to 0.085 and 0.066, respectively and S2 soil to 0.11 and 0.15, L/mg respectively, and Freundlich absorption capacity (KF) of S1 soil decreased to 19.2 and 22.5 and S2 soil to 28.2 and 28.1 L/kg, respectively. Enriched biochars significantly reduced the buffering indices of both soils indicating phosphorus adsorption decreased and increased the availability of phosphorus for the plant. The standard phosphorus requirement of S2 soil was lower than S1 soil by both equations. Therefore, enriched biochar can be an effective strategy to increase phosphorus availability and reduce the use of chemical fertilizers in saline and non-saline conditions; however, more field studies are needed for a clear understanding of the potential of P-enriched biochar as a fertilizer alternative.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb