Search published articles


Showing 13 results for Degradation

M.a. Hajabbasi, A. Jalalian, J. Khajedin, H.r. Karimzadeh,
Volume 6, Issue 1 (4-2002)
Abstract

Due to physiography and weak structure, the pasture soils in Boroojen are potentially degradable. Converting pastures to agricultural land accelerates the degradation processes. A study was conducted in 1999 to show the effects of almost 20 years of farming on originally pasture land on soil physical properties, fertility, and tilth index of pastures in Boroojen region in Chahar Mahal and Bakhtiari Province (central Zagrous). Soil texture, clay content, bulk density, organic matter, saturation moisture percent, cone index, plasticity index, mean weight diameter and aggregate size and distribution, nitrogen, phosphorus, and potassium were measured.

After 20 years of cultivation, bulk density increased about 20% while organic matter decreased by 30%. Cone index was lower in the undisturbed pasture but nitrogen and phosphorus contents were higher compared to the disturbed pasture. The undisturbed pasture contained more larger (> 1 mm) aggregates, while the disturbed pasture had more smaller aggregates. Sustainable use of natural resources will lead to their long term workability, while negligence of conservational practices including appropriate farming management practices will result in the destruction of these resources.


M. Forouzangohar, G. H. Haghnia, A. Koocheki, F. Tabatabaie-Yazdi,
Volume 9, Issue 1 (4-2005)
Abstract

Of all types of xenobiotics, pesticides such as herbicides play a significant role in soil and water pollution due to their widely usage all over the world. This study addresses the ability of organic amendments to enhance atrazine and metamitron degradation in two herbicide contaminated soils with contrasting textures under laboratory conditions. Soil samples were collected from surface soils with textures of sandy loam and silty clay, from northeastern part of Iran. Initial concentration of herbicides was 50 mgkg-1 soil. Contaminated soil samples were treated by manure, compost and vermicompost at the rates of %0.5 and %2 (w/w). Residual concentrations of atrazine and metamitron were determined by HPLC at the end of incubation periods of 20,40 and 60 d. Residual concentrations of atrazine were 93, 77.8 and 72.4 % of the initial concentration after 20, 40 and 60d incubation, respectively. Residual metamitron concentrations were clearly lower than atrazine. After 20,40 and 60 d., the remaining concentrations of metamitron were 5.8, 2 and 1.2 %, respectively. Organic amendments at the rates of .5 and 2 % showed similar effects on the enhancement of herbicides degradation in soils. However, no significant effect was observed between types of organic amendments. Degradation was clearly affected by soil textures. Residual concentrations of herbicides were higher in sandy loam than in silty clay soil.
M. Borji,
Volume 10, Issue 2 (7-2006)
Abstract

Recently, the use of microorganisms for conversion of plant biomass into many commercially valuable products has been studied. In this study, some soil samples, composting plant materials, and composted manure from different parts of Markazy province were collected to isolate and identify aerobic bacteria, which have been capable of utilizing lignin preparations as a sole source of carbon. Bacteria were isolated by using three types of lignin preparations and hot- water- extracted wheat stover and saw dusts. Two of the isolates, identified as Streptomyces sp. and Pseudomonades sp. were able to degrade wheat stover and saw dust lignin and polysaccharides. The growth rate of Streptomyces sp. and Pseudomonades sp. was higher in wheat stover fed cultures than the saw dust fed cultures. Results also showed that bacteria treatment of lignocelluloses and nitrogen supplementation of culture media had considerable effects on chemical composition of wheat stover and saw dust. All two bacteria genera increased crude protein, APPL, soluble lignin, and decreased carbohydrates and insoluble lignin of wheat stover and saw dust (P<0.01). Streptomyces showed more degradation ability than Pseudomonades, especially in culture media containing wheat stover. The utilization of yeast extract (as nitrogen source) improved degradation abilities of bacteria. The findings of this study indicate that these bacteria could be used for biological upgrading of agriculture residues in order to feed animals.
A. Taebi, K. Jeirani, A. Mirlohi, A.r. Zadeh Bafghi,
Volume 11, Issue 42 (1-2008)
Abstract

  Some industrial processes, such as plating and gold mining, utilize cyanide, which entering in their effluents. Because cyanide compounds are toxic contaminants, the waste-containing cyanide must be treated before discharge in the environment. Several methods are available for cyanide removal or detoxification. Natural degradation, alkaline chlorination, and oxidation with hydrogen peroxide are the most common methods in full-scale plants. Because of technical and economical concerns related to these methods, biological treatment processes have recently come under consideration. In phytoremediation, plants potential for pollutant removal is used. The main objective of present study is to investigate feasibility and potential of phytoremediation of cyanide-polluted soils by non-woody plants. The experiments carried out in this study were a completely random factorial design procedure, with three replications. Three non-woody plants: sorghum (as a cyanogenic cereal plant) and fescues with and free of endophyte (as grasses), were examined. Analysis of variance of the data obtained on soil cyanide reduction and cyanide accumulation in plants showed that phytoremediation is a suitable technique for low concentration of cyanide-polluted soils. Besides, it was been found that sorghum has a better soil cyanide removal efficiency than fescues, so that a significant portion of soil cyanide will accumulate in sorghum tissues.


M Momeni, M Kalbasi, A Jalalian, H Khademi,
Volume 12, Issue 46 (1-2009)
Abstract

The forms and dynamics of soil phosphorus can be greatly affected by land use changes, which often involve changes in vegetation cover, biomass production and nutrient cycling in the ecosystem. Present research evaluates the impact of land use change on the amount of total organic and inorganic P, labile, moderately labile and nonlabile P pools in semiarid soils of central Zagros. Samples were collected from surface soils (0-10 cm) of i) of moderately degraded pasture (20-25% plant cover), ii) highly degraded pasture (5-10 % plant cover), and iii) cultivated field (10 years) in Soolegan sub watershed and i) moderately degraded pasture (25-30 % plant cover) and ii) highly degraded pasture (5-10 % plant cover) in Sadat Abad sub-watershed. Significantly (P<0.05) low amounts of total organic P were found following cultivation (23.9%) and overgrazing (18.2 and 40.8 %) in Soolegan and Sadat Abad, respectively. The largest depletion of labile organic P (NaHCO3-Po) (72.3%) and moderately labile organic P (H2SO4-Po plus NaOH-Pi) (24.3%) were observed in cultivated rainfed land in Soolegan. Overgrazing led to decrease in labile organic P (42.1 and 64.4%), moderately labile organic P (13.9 and 35.7%) and nonlabile organic P (NaOH-Po) including moderately resistant and resistant organic P (12.9 and 44.4%) in Soolegan and Sadat Abad, respectively. Our results showed that degradation of natural plant cover cause to depletion in the soil P pools. Decreasing the amounts of moderately resistant and resistant P pools led to a decline in soil productivity and fertility.
M Valipour, M Karimian Eghbal, M.j Malakouti, A Khosh Goftamanesh,
Volume 12, Issue 46 (1-2009)
Abstract

Salinization and alkalization are considered spatiotemporal dynamic soil degradation processes. In order to investigate the effects of agricultural activities on land degradation and soil salinity, Shamsabad area in Qom province was selected. Aerial photos (1955) and satellite images (1990-2002) were used to examine the changes in land use. Soil samples were collected from 25 locations in the study area from 0-50 cm and 51-100 cm depth at each location. For comparative purposes, sampling locations in this study were similar to locations used for salinity study in 1983. For each sample, pH, electrical conductivity (ECe), base saturation percentage, exchangeable sodium, lime and texture were measured. Land use and salinity maps were created by using geographic information system (GIS) softwares. Results revealed an increase of 9.5 times in cultivated lands in 47 years. Increase in agricultural activities in the study area has also intensified the pressure on water resource in the area, lowering ground water tables and degrading water quality. In the 0-50 cm soil depth, the average soil ECe was 6.5 dS/m in 1983, which increased to 10.7 dS/m in 2005. If soil salinity trend and pressure on water resources continue, large part of Shamsabad area is expected to change to desert in near future years.
E Ranjbar, G.h Haghnia, A Lakzian, A Fotovat,
Volume 13, Issue 50 (1-2010)
Abstract

This study was conducted to compare the impact of various organic amendments with different C/N ratios and chemical compositions on biological and chemical degradation of Atrazine in sterile and non-sterile soils. The experiment was carried out in a factorial arrangement (2×6×2) including two soil types (sterile and non sterile soils), six types of organic amendments (vermicompost, cow manure, glucose, starch and sawdust and without organic matter) and two levels of inorganic nitrogen fertilizer (0 and 250 mg kg-1), with three replications. Initial Atrazine concentration in soil samples (silty loam) was adjusted at 100 mg.kg-1. Soil samples were amended by organic materials at the rate of 5% by weight and treated with 250 mg inorganic nitrogen fertilizer( NH4NO3). Half of soil samples were sterilized by HgCl2. Residual Atrazine concentration in soil samples were determined by HPLC at the end of 20, 40 and 60 days incubation time. The results showed that all the applied organic amendments (except for cow manure) and inorganic nitrogen treatment reduced biological degradation of Atrazine in non- sterile soil samples. It was not possible to predict the biological degradation of Atrazine based on C/N ratio of organic amendments and microbial activity. The results also showed that chemical degradation of Atrazine after 60 days of incubation was not affected by organic amendment and inorganic nitrogen fertilizer.
A.r. Melali , M.a. Hajabbasi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (7-2011)
Abstract

The petroleum refinery sludge is an important source of environmental pollution. Burning and burying of the sludge may have adverse effects on environment and human health. Thus, other mechanisms for decreasing the toxic effects of hydrocarbon substances in the sludge must be used. In this study, Isfahan refinery sludge was dewatered, air dried and mixed by 0, 10, 20, 30 and 40% w/w ratio with two calcareous soils, viz., Mahmoud Abad (Typic Haplocalcids with clay texture) and Bagh Parandegan (Anthropic Torrifluvents with silty loam texture). Different mixtures of soil and sludge were farmed for 21 days and irrigated on a daily basis to field capacity. Then, 100 seeds of Tallfescue (Festuca arundinacea) and Agropyron were planted in polluted soils with 3 replicates in 3 kg pots for 5 months. Result showed that Tallfescue and Agropyron yields decreased in sludge contaminated treatments. In the 40% sludge treatment, Tallfescue decreased the total petroleum hydrocarbons content by 65 percent. The highest degradation for agropyron was in the 30% sludge treatment which showed about 55% reduction in total petroleum hydrocarbons. The 40% sludge treatment resulted in the minimum yields of root and shoot plants. The highest degradation of TPHs occurred in the Tallfescue rhizospher of 40% sludge. Maximum degradation of TPHs on the Agropyron rhizospher was in 30% sludge mixed with Bage parandegan soil, but maximum yield of plant was in 20% sludge. Our study shows that Tallfescue rhizospher is most effective for decreasing TPHs, and that the phytoremediation in soils with more clay can adsorb and fix the toxic components and then at higher levels of pollutions can let the plants grow.
N. Yaghmaeian Mahabadi, M. Naderi Khorasgani, J. Givi,
Volume 15, Issue 58 (3-2012)
Abstract

Remote sensing has been considered as an appropriate tool for temporal monitoring of some natural phenomena. Ardestan Region is prone to land degradation and masked by sand sheets, sand dunes, clay flats, desert pavement and different kinds of salt crust due to dry climate. To study the trends of land degradation in last three decades, four satellite data sets of Landsat MSS, Landsat TM, Landsat ETM+ and IRS acquired in 1976, 1990, 2001 and 2008, respectively were analyzed. The time series analysis revealed that the bare clayflats have decreased and clayflats with vegetation cover have expanded over 32 years. During this period, the areas which are covered by gravel have decreased 13 percent and both the area covered by salt crusts and aeolians have extended 2 percent. Puffy grounds have developed by 2001 but their magnitudes have decreased between 2001 and 2008 as they have been masked by the moving sand ripples. Reduction of 13 percent of sand sheets between 1990 and 2008 indicates that soil conservation practices have efficiently controlled land degradation and desertification in the area.
M. Ajami, F. Khormali,
Volume 16, Issue 61 (10-2012)
Abstract

In order to study land degradation from the soil genesis and micromorphological perspective, ten soil profiles were dug and described on five slope positions in both forest and deforested cultivated land. The soil samples were taken from all horizons for physico-chemical analysis and micromorphological studies. Forest soils had a well developed argillic and calcic horizons and also mollic epipedon. These soils were classified as Alfisols and Mollisols. Carbonate leaching into the depth of soil profile and translocation of clays to lower layers and formation of developed soils are by no means related closely with the dense forest cover and its subsequent landscape stability and favorable leaching conditions. Dominant soil orders in this area were Inceptisols and Mollisols. In cultivated landuse, no argillic horizon was observed except in toeslope position. Absence of argillic horizon or its elimination following deforestation is one of the most important and obvious pedogenetic evidences of land degradation after land use change. Outcropping of high carbonatic layers (calcic horizon), disappearance of mollic and formation of ochric epipedon, presence of redoximorphic features attributed to runoff in lowland, decrease of solum thickness, and change of soil color were the other pedogenic indicators for land degradation in the study area. Microscopic observations showed that granular and crumb microstructures with high porosity were converted to massive and compact ones with low porosity in the deforested area. Disappearance of clay coatings besides absence of excremental pedofeatures were the other important micromorphological evidences of erosion and land degradation.
Z. Khosravani, S. J. Khajeddin, M. Mohebbi, A. R. Soffianian, A. H. Parsamehr,
Volume 19, Issue 72 (8-2015)
Abstract

Segzi, located in the east of Isfahan, is one of the most important centers of desertification crisis in Isfahan province. Human overtaking, land deformation and the presence of huge artificial topography in flat plain has created a very unpleasant landscape in the area. In this study, satellite images Cartosat-1 were used for mapping land degradation. By using DGPS, 9 points with appropriate distributions related to road junctions were selected. These points after Interior and exterior orientation determined as control points in Cartosat-1 pair images. To improve compliance, process of points development and production of 31 tie points was done. These points was coordinated in triangulation process and introduced as check points. Desirable RMSe, 0.3 pixel is obtained. Then DEM based on 40 points was prepared with 15×15m pixel size. The DEM, in GIS software was classified to 9 elavation classes by Natural Breaks method. The file of classified raster DEM convert to vector andcut and fill appeared as polygon that by encoding them, excavation map is produced in GIS with Kappa 0.95 and 0.97 overall accuracy. The Results of this study show that Cartosat-1 satellite images have ability for study of degraded lands and anthropogenic holes. The topographic changes caused the loss of natural vegetation and desertification in this area has developed.


H. Khaledian, D. Nikkami,
Volume 21, Issue 1 (6-2017)
Abstract

Appropriate utilization of agricultural land and natural resources, decreased erosion and increased production occurs in watersheds. On the other hand, land use pattern due to increasing human activities on the ground to meet different needs, is changing. Optimization of land use is one of the management methods to achieve stability and reduce soil erosion. In this study, by using linear programming (simplex) and Geographic Information System(GIS), was investigated the land use optimization in three scenario option to: current condition, management condition, and standard condition.Erosion potential by using MPSIAC Model in irrigated land 1.65, dry lands 3.31, pasture 3.64, gardens 1.49 and 3.85 tons per hectare per year was estimated for Chehel-Gazi basin. The results of the sensitivity analysis for tree scenario showed that in the event optimize land use, erosion potential in the current Condition 0.85 percent increased, But in the land management Condition 16.92 percent and in a standard Condition 32 percent decreased. The results of sensitivity analysis showed that changes in the area of pasture all three options have the greatest impact in changing erosion potential of basin.


A.s. Hosseini Khezrabad, A.a. Vali, A.h. Halabian, M.h. Mokhtari,
Volume 27, Issue 4 (12-2023)
Abstract

Desertification is one of the most serious ecological environmental problems in the arid regions. Quantitative assessment of the desertification process is important for the prevention and control of desertification. In this research, the IMDPA model was used to evaluate the quantitative and qualitative desertification situation in the northwest of Yazd. Three criteria of soil, vegetation, and wind erosion were considered in this model. Several indicators were defined for each criterion with a weight of 0 (low) to 4 (very severe). The geometric mean of all three criteria was used to prepare a map of sensitive areas to desertification in ArcGIS. The results indicated that more than 92% of the research area was in the extreme class of desertification, and only the dunes work unit was in a very intense class. Finally, the whole of the research area with a final score of 3.04 was placed in the extreme class of desertification intensity. Also, the soil criterion with the highest weight score of 3.26 has had the greatest impact on the desertification of the northwest region of Yazd. Therefore, it is necessary to implement remedial and revitalization operations in this region according to the expansion of the phenomenon of desertification and the high influence of the soil criteria. The results of the research showed the intensity of desertification, the potential, and the sensitivity of the region to the phenomenon of desertification can be referred to as a departure from the natural functioning of the system.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb