Search published articles


Showing 6 results for Deposition

Z. Mahmoodi, H. Khademi ,
Volume 18, Issue 67 (6-2014)
Abstract

Atmospheric dust is an important source of heavy metals, particularly in urban environments. Heavy metals can easily attach to dust particles and be distributed in large areas. The objective of this study was to evaluate the status of major heavy metals in the atmospheric dust of Isfahan and adjacent cities. A total of 144 dust samples were taken during a period from August to December 2010 from Isfahan, Khomeynishahr, Falavarjan, Mobarake and Zarinshahr cities. Dust samples were extracted with HNO3 65% and the total concentration of metals including Pb, Zn, Cd, Cu, Ni, Co, Cr and Mn in the samples was measured by an atomic absorption spectrometer. The mean concentration of these metals was 223.5, 470.3, 3.5, 71.0, 82.0, 26.5, 24.4 and 426.3 mg kg-1, respectively. Results indicated that heavy metals concentration in any area was different depending on the source of pollution and it was much higher than the mean concentration of the corresponding heavy metal in soils. Besides, the highest deposition rate of all the heavy metals in this study was found in November-December period. This could be attributed to an increase in the use of heating systems and also to a temperature inversion event prevailed in the area. Atmospheric deposition seems to be an important pathway of heavy metals addition to soils. For example, it is responsible for 35-91% and 12-47% of Pb and Cd entering the soil in the area, respectively.
M. Khastar-Borujeni, H. Samadi, K. Esmaili,
Volume 18, Issue 68 (9-2014)
Abstract

Due to adhesion properties of fine sediments, chemical physics factors of fluid can cause changes in the behavior of sediments. In this study, the characteristics of sediment deposition with three levels of waste water, different shear stresses and initial sediment concentrations were investigated in the annular flume located at Hydraulic Laboratory of Shahrekord University. Sediments for experiments were taken from the Pirbalut dam reservoir. The velocity and the shear stress profiles were measured using an Acoustic Doppler Velocimeter (ADV).The results showed that the concentration of cohesive sediment was decreased with time and finally it reached an equilibrium concentration of sediment. The equilibrium concentrations to initial concentration (Ceq/C0) in special shear stress, for different initial sediment concentrations and different levels of waste water were almost the same. Equilibrium concentration was dependent on the initial concentration sediment. Threshold and full deposition shear stresses were increased in waste water. Shear stresses of full deposition for 0, 30 and 60 % wastewater were 0.053, 0.075 and 0.070 N/m2, respectively. Also, for specified levels of waste water, the values

 were obtained 10, 15 and 17, in which the suspended sediments would remain.

F. Jafari, H. Khademi,
Volume 18, Issue 70 (3-2015)
Abstract

Dust deposition occurs extensively in arid and semiarid regions of the world. Since dust particles are fine-sized, they have a high adsorption capacity and also high contamination potential. The objective of this study was to evaluate the temporal and spatial distribution of the rate of atmospheric dust deposition in different locations in Kerman urban area. Dust samples were collected monthly using glass traps installed on the roof of 35 one-story buildings in Kerman for 7 months from April 20 to Nov. 20, 2012 (a total of 245 samples). After each monthly sampling, traps were washed and dust samples transferred to the laboratory and weighed. The mean dust deposition rate of 7 months was mapped using the inverse distance weighting (IDW) approach. The wind rose of Kerman was drawn by WRPLOT 7.0.0. The results showed that the average rate of dust deposition decreased during the 7 months studied from 17.4 to 5 g/m2. month, which could be attributed to the decrease in wind velocity. The spatial distribution of the samples also showed that the dust deposition rate varied from 4.84 in the southern parts to 14.84 g/m2.month, mostly in the northern locations of the city. The wind rose based on the average wind speed of the 7 months of sampling indicated the prevailing wind blows from north, northeast and northwest and the dust spatial distribution well follows the wind direction. In general, the rate of dust deposition in Kerman city is high and therefore, the source of dust has to be well detected and proper management practices are necessary.


S. Norouzi, H. Khademi,
Volume 19, Issue 72 (8-2015)
Abstract

Spatial and temporal distribution of dust deposition rate (DDR) in Isfahan city and the influencing climatic parameters were studied. Dust samples were collected using glass trays placed on the roof of one-story buildings from 20 sites in Isfahan city for 12 months. Climatic data were obtained from Meteorological Organization and analyzed. The highest and the lowest amount of DDR in agreement with the direction of prevailing wind were observed for dry months with eastern and northeastern wind directions and wet periods with western and southwestern wind directions, respectively. This can indicate dust emission from the desert located in eastern part of Isfahan city. Statistically significant inverse correlation between DDR and precipitation and relative humidity, and significant and positive correlation of DDR with Min and Max temperatures in all the studied months and also with Max and average wind speed for dry sampling months may well justify the temporal distribution of DDR in the city. In dry months, finer particles from eastern desert can be transported a longer distance and deposited in the western part of the city, far from the source area. In wet seasons, however, soil aggregates become coarser as a result of particle adhesion. This, in turn, results in the deposition of dust near the source area as the transporting power of dust reduces.
F. Jafari , H. Khademi,
Volume 21, Issue 1 (6-2017)
Abstract

Dust deposition phenomenon is an important climatic and environmental issue in arid and semi-arid regions. The objective of this study was to examine important characteristics of atmospheric dust in Kerman as one of the major cities in arid areas of our country with high potential of dust production. Dust samples were collected monthly using glass traps installed on the roof of 35 one-story buildings in Kerman for 7 months from April 20 to Nov. 20, 2012. To compare the results of atmospheric dust with those of soil, 60 surface soil samples (0-10 cm) from outside Kerman and 35 soil samples from urban areas were also collected. Some physical and chemical characteristics such as pH, electrical conductivity, organic matter, calcium carbonate equivalent, and  particle size distribution were determined in dust and soil samples. The results of chemical analyses indicated that the amount of these properties is much higher than that in soils. Atmosphere dust particles appear to mainly originate from alkaline and saline soils surrounding the city of Kerman. Dust particle size distribution analysis further confirmed that dust particles have been transferred to Kerman city from medium to long distance areas.  Temporal variability in dust chemical properties indicates that the contribution of anthropogenic and natural sources to urban dust in Kerman has seasonal changes. Based on the results obtained, it is necessary to control dust production outside and inside the city and its distribution in populated areas employing proper management practices.


S. S. Ariapak, A. Jalalian, N. Honarjoo,
Volume 25, Issue 2 (9-2021)
Abstract

In this study, spatial-temporal variation of dust deposition rate in the western and eastern half of Tehran and its climatic parameters affecting were studied. At 34 points in the city, dust samples were collected by glass traps from the roof, for twelve months, and the climatic data were obtained and analyzed from relevant organizations. The highest deposition rate is in the western half of the city and its total amount has varied from 54.52 to 121.21 g/m2/y. In both halves of the city, summer has the highest dust deposition rate and its central areas have the highest amount. There were significant positive correlations between dust deposition rate with temperature and medium wind speed, and there were significant negative correlations between dust deposition rate with rainfall and relative humidity in all months, which justifies the high dust deposition rate in the dry seasons of the year. The results of stepwise regression showed that rainfall was the most important factor affecting the dust deposition rate in both halves of the city. The city of Tehran has a special geographical location the presence of mountains like a barrier has prevented dust from leaving the city and the air inlet corridor of Tehran has faced problems due to the expansion of building construction and high-rise building. Other factors affecting the rate of dust deposition in this city, in addition to the distance from the main source of dust production, atmospheric parameters can be mentioned the existence of barren lands around the city, vegetation cover, construction operations, and traffic.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb