Search published articles


Showing 2 results for Dez Basin

B. Navidi Nassaj, N. Zohrabi, A. Shahbazi,
Volume 23, Issue 2 (9-2019)
Abstract

Integrated simulation of water resources systems is an efficient tool to evaluate and adopt various options in macro-policies and decision-making procedures that are in line with the sustainable development of drainage basins. One of the drainage basin management policies is to enhance the efficiency of agricultural land use. Considering the complicated function of the drainage basin elements and their interaction with each other due to water discharge fluctuations caused by various factors such as climate change, the evaluation of these policies is of great importance. Given the low irrigation efficiency in Iran, the present study was aimed to evaluate the effects of management scenarios (including long-term irrigation efficiency increased up to 20% with 5% intervals) and discharge fluctuation scenarios (including 5% and 10% decrease in the average basin inflows) on the reliability and vulnerability of water resources system in Dez Basin. The integrated scenarios were simulated in the WEAP model. The scenarios were separately simulated for the Dez irrigation network and all farmlands across Dez Basin. According to the results, reliability was decreased by 5.69 and 18.89% in the scenarios with 5% and 10% decrease in the average basin inflows, respectively. Furthermore, the irrigation efficiency of 20% in the scenario considering the current inflows ended up with the reliability of 73.58%. Moreover, in the scenario involving 5% decrease in the average basin inflows, the reliability was increased by 3.8% with an increasing efficiency of 20%; with 3.8% and 5.7%, there was an increasing efficiency of 15% and 20% in all farmlands, respectively. In the scenario consisting of 10% decrease in average basin inflows, the reliability was increased by 1.91%, 3.8%, and 5.7% with the increasing efficiency of 10%, 15%, and 20%; on the other hand, with, these were 3.8% 9.46%, and 13.2% with increasing efficiency in all farmlands, respectively. In all scenarios, the vulnerability was found to fluctuate between 25% and 31%, which was systematically analyzed.

F. Afsharipour, M.r. Sharifi, A. Motamedi,
Volume 28, Issue 4 (2-2025)
Abstract

Drought monitoring in snowy basins requires modifications in common drought indices, called snow drought indices. The latest developed snow index is SZIsnow. The SZIsnow index calculating with special algorithm requires access to the values of 22 different climatic and physical variables, including soil moisture at a depth of 0 to 10 centimeters, soil moisture at a depth of 100 to 200 centimeters, air temperature, water equivalent to snow, runoff from snow melting, snowfall, rainfall, total precipitation rate, evaporation and transpiration, wind speed, surface runoff, groundwater runoff, potential evaporation, air pressure, relative humidity, net latent heat flux, ground heat flux, net sensible heat flux, evaporation from bare soil, evaporation from the canopy, and potential evapotranspiration. So far, the mentioned index has been calculated only on a continental scale. Drought monitoring at the basin scale is important as one of the management aspects of water resources. On the other hand, due to the lack of sufficient information to estimate the mentioned parameters, the use of information from global databases will be a solution. Therefore, in this research, while introducing the process of calculating the SZIsnow index, in the Dez catchment area, extracting the required parameters of the index in a time scale of 3, 6, and 12 months and a period of 41 years (1982 to 2023) using data GLDAS and then drought monitoring of the basin was studied. The results showed that the new SZIsnow index is a multi-variable index that provides the possibility of calculating the index due to the existence of parameters that lack ground observations and on the other hand, the availability of the reliable GLDAS database. Also, the results showed that in the time steps of 3, 6, and 12 months, July at -0.59, June at -0.45, and October at -0.35 had the highest amount of drought, respectively.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb