Search published articles


Showing 2 results for Dimensional Analysis

J. Abbas Palangi, A. M. Akhond Ali,
Volume 12, Issue 44 (7-2008)
Abstract

For an appropriate drip irrigation system design, a prediction of soil wetting pattern is needed for a given soil texture. The wetting pattern geometry is a key factor for emitter distance determination as well as crop type. The geometry of the wetting bulb is dependent on the parameters such as soil hydraulic properties, emitter discharge and the irrigation time. This study has been conducted in Albaji region in km 25 on the Ahvaz-Andimeshk road, in order to estimate the geometry of the wetting pattern under the point source trickle emitters in sandy soil with different discharge. The emitters were calibrated to provide 5, 10, 20, 30 and 40 liter per hour discharges. The maximum wetted soil surface and depth was measured by digging the irrigated soil. Two models were developed to predict wetted soil surface diameter and depth under a point source based on Buckingham's π theorem. The equations were calibrated by using the measured data. Then resulted scientific-empirical equations have been evaluated. Considering the maximum relative error of 14.3% and root mean square error of 3.8cm in estimation of the wetted soil surface diameter and depth, the models are recommended to estimate the geometry of the wetting bulbs with a high degree of accuracy, and can be used in designing and appropriate drip irrigation system management
E. Nohani, M. Shafai Bejestan, A. R. Masjedi,
Volume 18, Issue 68 (9-2014)
Abstract

Local scour around piers is the major cause of their foundation failure in the river bends that endangers the stability of the structure and its efficiency. Riprap is commonly placed around the bridges piers for local scour protection. The aim of this study was to present an equation for estimating stable riprap diameter around a cylindrical bridge pier in river bends. In this study, using an experimental model with a 180 degree bend stability, four different riprap diameters under different flow conditions and clear water flow were studied. Empirical relationships based on dimensional analysis for stable riprap design around the bridge foundation was presented. The experimental results were compared with equations provided by other researchers, including Lauchlan (1999), Parola (1995) and Chiew (1995). Results showed that the presented equation in this paper has a good precision. The simple equation presented in this study included all factors important to the instability of the riprap, and recommends designing ripraps around the bridge pier in river bends.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb