Showing 18 results for Discharge Coefficient
T. Honar, M. Javan, A. Keshavarzi,
Volume 6, Issue 3 (10-2002)
Abstract
Side weirs as flow diversion devices are widely used in irrigation, land drainage and urban sewage systems. In the present study, the effects of the length and height of inclined side weir crest on discharge coefficient were investigated in prismatic and nonprismatic rectangular channels.. In this study, 675 laboratory tests were conducted.
Analysis of experimental tests showed that the discharge coefficient is strongly correlated with uptream Froude number, height of weir to depth ratio at upstream of weir, ratio of water depth on weir to length of weir, and with prismatic factor. Based on experimental results, a model is proposed. The model is capable of estimating the discharge coefficient under subcritical flow conditions. Finally, the data from the proposed model was compared with those obtained by other researchers under different side and bed slopes. There was a good agreement with a relative error of less than ten percent.
S. M. A. Zomorodian, M. R. Bagheri Sabzevari,
Volume 9, Issue 4 (1-2006)
Abstract
The vertical pipe intake is an economical structure relative to the other alternatives. VPI usually installed near the water surface and prevents from the coarse sediment entrance to the system. The strong vortex in VPI entrance is a major problem which may reduce the system efficiency. Recognizing the vortex affected parameters, helping engineers to design anti vortex structures. In this study an experimental model is built to study the effect of tangential velocity, flow direction at approach channel outlet on the discharge coefficient of vertical pipe intake. By dimensional analysis it is indicated that the vortex in VPI could be defined by the dimensionless numbers (Reynolds, Weber, Froude, Circulation and Submergence). The relationship between the Froude, Circulation and Submergence numbers are presented. By using this relation one can determine the Submergence number and then calculate the discharge coefficient of vertical pipe intake.
M. Toozandehjani, M. Kashefipour,
Volume 16, Issue 62 (3-2013)
Abstract
One of the usual ways to dissipate excess energy in the dam's downstream is hydraulic jump. Hydraulic jump is a rapidly varied flow, in which the flow conditions change from supercritical to sub-critical with a large amount of energy loss. In this research, a combination of two water jets in the form of overflow dam and underflow through a slot on the body of an ogee dam with the USBR standard was established in order to decrease the length and sequent depth in a hydraulic jump. In these experiments, the underflow from the slot was designed with three out passages of 0, 45, and 90 degrees in respect horizontal line. Six different discharge ratios were used for each slot and the effect of each experiment conditions on decreasing of the length and sequent depth of hydraulic jump was investigated. The results showed that the confluence of two jets with 45 degrees from the slot had the maximum effect on the reducing of the length of hydraulic jump and sequent depth, and when 26 percent of the total discharge passed through the slot as underflow, it caused the length of hydraulic jump to be reduced by 50 percent in comparison with the classic jump. This slot not only decreases the length and sequent depth of hydraulic jump but also the sediment behind the dam can be evacuated through it. Moreover, it increases the discharge coefficient.
A. Masjedi, A. Taeedi,
Volume 18, Issue 67 (6-2014)
Abstract
Floor intake is one of the best options for diverting mountain rivers' flow. Determination of discharge diverted in different conditions of flow in main channel is one of the main objectives for intake under rack floor condition. Gradient and shape of grid rod floor can affect the discharge deviated. In this experiment, placement and gradient of grid rods and also their effects on the discharge coefficient and hydraulic parameters were investigated. For this purpose, a physical model made of glass with variable gradient was used for the main channel. To conduct and measure the discharge diverted, a sub-channel 8 meters away from the entrance of main channel was installed below the main channel. Length and width of intake entrance were 10 and 50 cm, respectively. At the entrance of intake a longitudinal grid with four different rod diameters, constant-space passing, and four different gradients were used. Meanwhile, for the investigation of flow rate four discharges were used. The results showed that intake discharge coefficient was increased with an increase in diameter of grid rod floor, reduction in floor gradient, and increasing of depth in the upstream network. In all cases, increasing the Froude number resulted in an increase in the intake discharge coefficient in the upstream network
M. Heidarpoor, S. H. Razavian, Y. Hosseini,
Volume 18, Issue 68 (9-2014)
Abstract
The combined system of gate and weir is used for flow measurement in open channels. But in case the passing water has floating material and sediment it damages their performance and hence error of measurement will increase. In order to solve this problem, weir and gate can be combined and a concentrated hydraulic system known as weir-gate can be developed, thus allowing sediments transportation from under the gate and floating particles on weir. The principal goal of this study was to investigate the passing flow characteristics by trapezoidal weir and sharp-edge rectangular sluice gate in rectangular channel, and also suggest a discharge coefficient for combinational flow in different flow conditions. The experiments were carried out in laboratory channel on models with different geometric dimensions under various hydraulic conditions. Discharge coefficient was presented for various condition of passing flow of trapezoidal sharp-edge weir and below rectangular sluice gate using statistical analysis conducted on dimensionless geometric parameters affecting the flow. Resulting discharge coefficients were in agreement with laboratory results.
A. A. Kamanbedast, S. R. Mousavi,
Volume 20, Issue 78 (1-2017)
Abstract
Morning glory spillway is one of the spillways and used when it is not possible to use any other spillways. With the onset of submergence and flow loss, and intensification of circulation and vortexes, spillway performance decreases severely. With decreasing discharge coefficient, the height of water in the reservoir increases and the risk of dam damage, caused by the lack of spillway ability of great flow discharge, increases. Anti-vortex piers are used to solve this problem. The increase of the submergence threshold can provide ability of greater flow discharging, without spillway submergence and its negative consequences. Anti-vortex piers, in addition to correcting circulation and vortexes, may also be effective in increasing the submergence threshold. To investigate this possibility, 110 experiments were performed with the physical model on spillways with square and circular inlet section in different modes and number of anti-vortex piers. Results show that increasing number of Anti-vortex piers increases the submergence threshold and spillway can discharge greater inflow and height of water without being submerged. The effect of the overflow of the circle shape, because currents and vortexes spinning in a circle overflow is higher than square spillway. Also the maximum discharge coefficient was observed when 4 vortex breakers were installed at the angle of 90 degrees.
H. Azarpeyvand, A. R. Emadi, M. Sedghi Asl,
Volume 23, Issue 1 (6-2019)
Abstract
Labyrinth weirs are the economic structures to increase the weir output efficiency in limited widths, which can be seen in the plane f trapezoidal and triangular forms. These weirs with a hydraulic load and fixed width pass the more discharge in comparison to other type of weirs. In this study, labyrinth weirs trapezoidal in plane form were investigated. The experiments were performed on 27 laboratory models with 9 different discharge rates and a total of 243 tests. The results showed that, in all of the composite trapezoidal labyrinth weirs, the ratio of discharge coefficient to Ht/p (Ht: Total hydraulic load and p: weir length) weir length was increased at first; after reaching the maximum rate, it started to decrease. According to the suggested general relation, the utmost impact on discharge coefficient resulted from the cycle number and Ht/p relation. Creating new labyrinth on the wing of the weir led to the increase of the effective length; as a result of it, the discharge rate increased in a specific amount of Ht/p. Also, the discharge through a trapezoidal labyrinth weir with the semicircular planform was better than the square; the square, in turn, was better than the simple trapezoidal weirs.
R. Monjezi, M. Heidarnejad, A. R. Masjedi, M. H. Pourmohammadi, A. Kamanbedast,
Volume 23, Issue 2 (9-2019)
Abstract
Nonlinear weirs are regarded as important hydraulic structures for water level adjustment and flow control in channels, rivers and dam reservoirs. One example of non-linear weirs is shaped as curved-zigzag. The crest axis of these weirs is non-linear. At a given width, the crest length is greater than that of the conventional linear weirs. Thus, they achieve a higher flow rate for an identical hydraulic load. This research experimentally focused on the discharge coefficient and flow rate of curved weirs with three different curve radii in two triangular linear and zigzag shapes. The discharge coefficients of these weirs were comparatively explored in terms of the hydraulic performance as a function of the total hydraulic load to weir crest height ratio (hd/P) and curvature angle (θ) (or curve radius). The results indicated that for the same hydraulic load, the increase of θ (the decrease in curve radius) led to a lower discharge coefficient; this was first because of the increased topical rise of water level, and then the more indirect path with a greater curvature through which the flow had to transport. Both factors could negatively affect the water discharge coefficient. In practice, the runoff coefficient at a weir with a curve radius of R/w=1.25 was approximately 8.5% greater than that of a weir with a curve radius of R/w=0.75 under a hydraulic load of 0.2.
J. Rouzegar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 3 (12-2019)
Abstract
Morning glory spillway is one of the spillways that used to passing of flood from high to low level. This spillway is used in the reservoir dams that are placed in narrow valleys and in many locations with high slope in reservoir walls. In the Morning glory spillways, the vortex flow can reduce discharge, discharge coefficient and the performance of spillway. The zigzag spillway, as another type, is introduced as a proper option for compensating the problem of passing maximum possible flow rate, usually encountered by spillways. In the present study, the experimental results of a physical model were used to develop a hydraulic design with squire and circle inlet and analysis method for Labyrinth Morning Glory Spillway. The analysis of experimental data in circle and square inlet showed, that increase in length of spillway and zigzag, causes decrease in the discharge coefficient. Finally the result of effect spillway inlet on flow rate demonstrate that discharge coefficient in square inlet is more than circle, whereas without vortex breaker.
M. J. Asadi, S. Shabanlou, M. Najarchi, M. M. Najafizadeh,
Volume 23, Issue 3 (12-2019)
Abstract
In this study, the discharge coefficient of the circular side orifices was predicted using a new hybrid method. Combinations made in this study were divided into two sections: 1) the combination of two algorithms including Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) and providing the PSOGA algorithm 2) using the PSOGA algorithm in order to optimize the Adaptive Neuro Fuzzy Inference Systems (ANFIS) network and providing the ANFIS-PSOGA method. Next, by identifying the parameters affecting on the discharge coefficient of the circular side orifices, 11 different combinations were provided. Then, the sensitivity analysis conducted by ANFIS showed that the Froude number and the ratio of the flow depth to the orifice diameter (Ym/D) were identified as the most effective parameters in modeling the discharge coefficient. Also, the best combination including the Froude number (Fr), the ratio of the main channel width to the side orifice diameter (B/D), the ratio of the orifice crest height to its diameter (W/D) and the ratio of the flow depth to the orifice diameter (Ym/D) for estimating the discharge coefficient was introduced. For this model, the values of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and correlation coefficient (R) were obtained 0.021, 0.020 and 0.871, respectively. Additionally, the performance of the ANFIS-PSOGA method was compared with the ANFIS-PSO and ANFIS methods. The results showed that the ANFIS-PSOGA method for predicting the discharge coefficient was the superior model
A. Rezaei Ahvanooei, H. Karami, F. Mousavi,
Volume 23, Issue 3 (12-2019)
Abstract
In this research, by using FLOW3D, the performance of non-linear (arced) piano key (PKW-NL) in plan and linear piano key weir (PKW-L), with equal length of weir, was compared. Results showed that nonlinearity of the weir caused 20% increase in the discharge coefficient. Investigating the velocity contours for these two weir models also showed that maximum velocity within the PKW-NL weir structure is about 30% lower than the PKW-L weir. Also, the performance of non-linear piano key weir was evaluated under inward (PKW-IC) and outward (PKW-OC) curvatures to the channel. Results showed that in the case of PKW-IC weir, the discharge coefficient was increased by 8% as compared to the PKW-OC weir. Investigating the pressure contours for these two weir models also shows that the average pressure within the PKW-IC weir structure is about 5% higher than the PKW-OC weir. This increase in pressure leads to a decrease in the speed and better distribution of flow over the weir keys.
A. Alizadeh, B. Yaghoubi, S. Shabanlou,
Volume 24, Issue 2 (7-2020)
Abstract
In this study, the discharge coefficient of sharp-crested weirs located on circular channels was modeled using the ANFIS and ANFIS-Firefly (ANFIS-FA) algorithm. Also, the Monte Carlo simulations (MCs) were used to enhance the compatibilities of the soft computing models. However, the k-fold cross validation method (k=5) was used to validate the numerical models. According to the input parameters, four models of ANFIS and ANFIS-FA were introduced. Analyzing the numerical results showed that the superior model simulated the discharge coefficient as a function of the Froude number (Fr) and the ratio of flow depth over weir crest to the weir crest height) h/P(. The values of the mean absolute relative error (MARE), root mean square error (RMSE) and correlation coefficient (R) for the superior model were calculated 0.001, 0.002 and 0.999, respectively. However, the maximum error value for this study was less than 2%.
A. R. Bahrebar, M. Heidarnejad, A. R. Masjedi, A. Bordbar,
Volume 25, Issue 2 (9-2021)
Abstract
The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.
H. Elahifar, O. Tayari, N. Yazdanpanah, M. Momeni,
Volume 25, Issue 4 (3-2022)
Abstract
The discharge coefficient of labyrinth weirs increases with increasing the crest length in a certain width range. The present research was carried out in a laboratory flume with a length of 8 m, a width of 0.6 m, and a height of 0.6 m. The discharge coefficient of two-cycle symmetric and asymmetric rectangular labyrinth weirs was experimentally measured. The dimensional analysis by the Buckingham π theorem indicated that the discharge coefficient was dependent on Se, B/Wavg, Ht/P, and WL/WR. According to the results, the discharge coefficient decreased with increasing the hydraulic head in the symmetric and asymmetric labyrinth weirs and the linear weir. Asymmetric labyrinth weirs with a WL/WR of 2.05 outperformed symmetric labyrinth weirs with a WL/WR of 1. Quantitatively, the discharge coefficient of the labyrinth weir with a B/Wavg of 3.1 was respectively 21% and 94% higher than that with a B/Wavg of 2.93 and 2.76. The discharge coefficient of the labyrinth weir with a WL/WR of 2.05 was 10-27% higher than that with a WL/WR of 1. The discharge coefficient of the linear weir was 60-250% higher than that of labyrinth weirs.
M. Sabouri, A.r. Emadi, R. Fazloula,
Volume 26, Issue 2 (9-2022)
Abstract
A compound sharp-crested weir is often used to measure a wide range of flows with appropriate accuracy in open channels. In this study, experiments were performed to investigate the hydraulic flow through a compound weir of circular-rectangular with changes in hydraulic and geometric parameters in free and submerged flow conditions. The characteristics of the weirs include rectangular spans width of 39 cm, a circular radius of 5, 7.5, and 12.5 cm, and heights of 10 and 15 cm. The results showed that by increasing the radius and height of the Weir, upstream water depth increases around 28.4%. At a constant h/p, the discharge coefficient increases with the increasing radius of the circular arc. Also, in the submerged conditions, the discharge coefficient is less (around 40%) than in the free flow condition, which is due to the resistance of the depth of the created stream against the passage of the flow.
M. Majedi Asl, T. Omidpour Alavian, M. Kouhdaragh, V. Shamsi,
Volume 27, Issue 3 (12-2023)
Abstract
Non-linear weirs meanwhile economic advantages, have more passing flow capacity than linear weirs. These weirs have higher discharge efficiency with less free height upstream compared to linear weirs by increasing the length of the crown at a certain width. Intelligent algorithms have found a valuable place among researchers due to their great ability to discover complex and hidden relationships between effective independent parameters and dependent parameters, as well as saving money and time. In this research, the performance of support vector machine (SVM) and gene expression programming algorithm (GEP) in predicting the discharge coefficient of arched non-linear weirs was investigated using 243 laboratory data series for the first scenario and 247 laboratory data series for the second scenario. The geometric and hydraulic parameters were used in this research including the water load (HT), weir height (P), total water load ratio (HT/p), arc cycle angle (Ɵ), cycle wall angle (α), and discharge coefficient (Cd). The results of artificial intelligence showed that the combination of parameters (Cd, H_T/p, α, Ɵ) respectively in GEP and SVM algorithms in the training phase related to the first scenario (Labyrinth weir with cycle wall angle 6 degrees) were respectively equal to (R2=0.9811), (RMSE=0.02120), (DC=0.9807), and (R2=0.9896), (RMSE=0.0189), (DC=0.9871) in the second scenario (Labyrinth weir with a cycle wall angle of 12 degrees) it was equal to (R2=0.9770), (RMSE=0.0193), (RMSE=0.9768), and (R2 = 0.9908), (RMSE = 0.0128), (DC = 0.9905), which compared to other combinations has led to the most optimal output that shows the very favorable accuracy of both algorithms in predicting the coefficient the Weir discharge is arched non-linear. The results of the sensitivity analysis indicated that the effective parameter in determining the discharge coefficient of the arched non-linear Weir in GEP and in SVM is the total water load ratio parameter (HT/p). Comparing the results of this research with other researchers revealed that the evaluation indices for GEP and SVM algorithms of this research had better estimates than other researchers.
S. Barani, M. Zeinivand, M. Ghomeshi,
Volume 27, Issue 4 (12-2023)
Abstract
In this study the effect of orifice number and dimensions in combined structure sharp crested rectangular weir with multiple square orifice was investigated. For this propose, some experiments in different flow rate, different orifice number and dimensions were done. The results showed that by different orifice numbers and dimensions, flow discharge increased at the same upstream flow head. This increasing trend was observed in all numbers and dimensions of the investigated experiments. The analysis of the quantitative results showed that by increasing the number of orifices, the discharge rate through the combined structure of weir-orifice was increased on average 2.06 liters per second and by increasing each centimeter of orifice dimensions, the discharge was increased by 2.82 liters per second. Also by calculating the percentage of flow rate increase, it was observed that by adding the orifice number, it increases by 18.7% and by increasing the size of the orifice by one centimeter, the flow rate increases by 28.1%.
M. Neisi, M. Sajadi, M. Shafai Bejestan, J. Ahadiyan,
Volume 28, Issue 3 (10-2024)
Abstract
Side weirs are hydraulic structures employed in irrigation and drainage channels as diversion devices or head regulators. The increasing efficiency of the structure of side weirs for constant head has been one of the concerns of researchers in the last decade. The use of different forms of sharp crest, labyrinth, piano key, and increasing the length of the overflow by changing the geometry of the crest have been investigated. In this research, a new type of triangular-shaped side weir has been studied in the laboratory under different hydraulic conditions in sub-critical flow conditions. The results demonstrated that by inclining the crests of the triangular side weir, the amount of vortex created at the entrance of the opening was reduced. So the discharge coefficient and the flow volume over the side weir showed an increase of up to 27% and 48%, respectively, compared to the normal triangular and rectangular side weirs. Also, after analyzing the data, a non-linear equation was presented to estimate the discharge coefficient with the dimensionless parameters of the ratio of the upstream depth to the weir height (y1/p) and the upstream Froud number (Fr1) with an accuracy of ±15% and NRMSE=0.134.