Search published articles


Showing 2 results for Discharge Coefficient.

M. Heidarpoor, S. H. Razavian, Y. Hosseini,
Volume 18, Issue 68 (9-2014)
Abstract

The combined system of gate and weir is used for flow measurement in open channels. But in case the passing water has floating material and sediment it damages their performance and hence error of measurement will increase. In order to solve this problem, weir and gate can be combined and a concentrated hydraulic system known as weir-gate can be developed, thus allowing sediments transportation from under the gate and floating particles on weir. The principal goal of this study was to investigate the passing flow characteristics by trapezoidal weir and sharp-edge rectangular sluice gate in rectangular channel, and also suggest a discharge coefficient for combinational flow in different flow conditions. The experiments were carried out in laboratory channel on models with different geometric dimensions under various hydraulic conditions. Discharge coefficient was presented for various condition of passing flow of trapezoidal sharp-edge weir and below rectangular sluice gate using statistical analysis conducted on dimensionless geometric parameters affecting the flow. Resulting discharge coefficients were in agreement with laboratory results.
M. J. Asadi, S. Shabanlou, M. Najarchi, M. M. Najafizadeh,
Volume 23, Issue 3 (12-2019)
Abstract

In this study, the discharge coefficient of the circular side orifices was predicted using a new hybrid method. Combinations made in this study were divided into two sections: 1) the combination of two algorithms including Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) and providing the PSOGA algorithm 2) using the PSOGA algorithm in order to optimize the Adaptive Neuro Fuzzy Inference Systems (ANFIS) network and providing the ANFIS-PSOGA method. Next, by identifying the parameters affecting on the discharge coefficient of the circular side orifices, 11 different combinations were provided. Then, the sensitivity analysis conducted by ANFIS showed that the Froude number and the ratio of the flow depth to the orifice diameter (Ym/D) were identified as the most effective parameters in modeling the discharge coefficient. Also, the best combination including the Froude number (Fr), the ratio of the main channel width to the side orifice diameter (B/D), the ratio of the orifice crest height to its diameter (W/D) and the ratio of the flow depth to the orifice diameter (Ym/D) for estimating the discharge coefficient was introduced. For this model, the values of Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and correlation coefficient (R) were obtained 0.021, 0.020 and 0.871, respectively. Additionally, the performance of the ANFIS-PSOGA method was compared with the ANFIS-PSO and ANFIS methods. The results showed that the ANFIS-PSOGA method for predicting the discharge coefficient was the superior model


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb