Search published articles


Showing 3 results for Dissolved Oxygen

A. Mirhashemi, M. Shayannejad,
Volume 23, Issue 1 (6-2019)
Abstract

Urban and industrial wastewaters are considered as the most contaminant of surface water. Entrance   of these pollutants to the river reduces the concentration of dissolved oxygen and aquatic life will be threatened. So, one of the main qualitative characteristics of water resources management is the concentration of dissolved oxygen. The base of the   developed model in this investigation is the convection- diffusion equation in soil. Terms of production and decay of dissolved oxygen were added to this equation. The final equation was discretized using the finite difference method with the implicit scheme. With applying the initial and boundary conditions, the equation set was solved by the Thomas algorithm. The calculations were done by programming in the MATLAB software. For the calibration and validation of the model, data obtained from two reaches of Zayanderoud River, including steel melt and Mobarakeh Steel factories, were used. The temporal and spatial variations of the dissolved oxygen were plotted and compared with the real data and the results of the MSP and CSP models. The results showed that the concentration of the dissolved oxygen could be well predicted through solving convection-diffusion equation with introducing two terms for the decay and production of oxygen. The comparison between the results of the model and two other models showed that the model led to better results in comparison to the MSP and CSP models.

S. Mirhashemi, M. Shayannejad,
Volume 23, Issue 3 (12-2019)
Abstract

Nowadays, environmental pollutions especially water pollution is increasingly developing. One of the problems of entering the pollutants to rivers is reduction in the concentration of river dissolved oxygen. In order to manage the water resources, amount of dissolved oxygen should be predicted. This study presents a novel equation for simulating the concentration of river dissolved oxygen by adding the oxygen production and consumption in the river factors to equation for transmission-diffusion of minerals in the soil. The resultant equation was separated in finite differential method and by using implicit pattern. Calculations were done by encodings in MATLAB software. In order to calibrate and confirm the dissolved oxygen model, data derived from Zayanderood River around Zob-Ahan factory of Isfahan and Mobarakeh Steel Complex was used. By using some data, coefficients of model were determined. Analyzing the sensitivity of model coefficients showed that aeration constant (Kr) had the most effect on predicting the model. Since depends on hydraulic parameters of river, sensitivity of depth and pace of river was studied and finally depth of river was introduced as the most sensitive variable.

R. Sadeghi Talarposhti, R K. Ebrahimi, A. Horfar,
Volume 25, Issue 4 (3-2022)
Abstract

Protection of rivers’ water quality as the most accessible source of the water supply has always been considered. In this paper, self-purification and the pollution decay coefficient values of Talar River, IRAN were studied based on field measurement of DO, BOD, pH, EC, Nitrate, Phosphate, and Temperature, in four seasons of the year 2018, in tandem with the river simulation and its calibration using QUAL2Kw model and the Streeter-Phelps method. In addition to the modeling and analysis results, the measured laboratory data values of the river water samples are also presented. Based on the results, the DO variations were ranged from 5.15 in summer to 7.47 mg/l in spring and BOD variations ranged from 1.88 in fall to 7.9 mg/l in summer. Also, according to the Streeter-Phelps method the decay coefficient values varied from 1.57 (1/day) in spring to 9.63 (1/day) in fall. The values of the Talar River decay coefficient also varied from 2 in fall to 7.7 (1/day) in summer involving the QUAL2Kw model.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb