Search published articles


Showing 1 results for Divergence

P. Heidarirad, A. A. Kamanbedast, M. Heidarnezhad, A. R. Masjedi, H. Hasoonizadeh,
Volume 24, Issue 1 (5-2020)
Abstract

Water supply at a desired rate at any time to meet the water requirements regardless of river discharge must be considered in the general design of intakes provided that the needs do not exceed the river flow. Due to the lack of necessary information in this field and the importance of sediment transport to the lateral intakes at river bends, this study aimed at understanding the mechanism of this phenomenon. To this end, the combined effect of convergence and divergence in lateral intakes on the sediment transport was investigated. According to the results, the diversion discharge to the intake was increased by converging the laboratory flume. By narrowing and converging the end of the flume, the diversion discharge was increased further, so that as the flume was converged to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was increased by 13.6% and 75%, respectively. This could be connected to narrowing, flow obstruction and backflow to the intake. In contrast, different results were found by diverging the flume. In other words, the inflow to the intake was decreased by diverging the flume. As the flume end was diverged, the diversion discharge was decreased further. By diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion discharge to the intake was decreased by 21.9 and 31.8%, respectively. The average diversion discharge to the intake at 30, 60 and 90º was 13.2, 15.2 and 11.5%, respectively. By converting the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was increased by 18.5 and 71.4%. In contrast, by diverging the flume to the size (b/B) of 0.75 and 0.5, the diversion sediment to the intake was decreased by 35.4 and 49.9%, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb