Search published articles


Showing 2 results for Drain Discharge

M. Akbari, B. Nazari, M. Parsinezhad , H. Ebrahimian,
Volume 16, Issue 62 (3-2013)
Abstract

This study was conducted on subsurface drainage network under operation in Behshahr. DRAINMOD model was used to simulate drainage system using measured data in 2006. The model was evaluated to estimate soil hydraulic conductivity by comparing the measured and predicted values of water table depth and drain discharge for different values of hydraulic conductivity. The results of this method were compared with the results of output drainage water method (as a baseline method). Use of water table depth simulation results in estimating hydraulic conductivity model resulted in considerable error, while the simulation results of drain discharge rate could be used with good accuracy for estimating it. There was a small difference between the output drainage water method and the inverse solution of DRAINMOD model to estimate soil hydraulic conductivity (2.3 and 2.5 cm/h, respectively). Thus, the comparison between the measured and predicted values of drain discharge could be a good criterion to estimate soil hydraulic conductivity using the inverse solution of the DRAINMOD model
E. Karamian, M. Navabian, M.h. Biglouei, M. Rabiei,
Volume 28, Issue 1 (5-2024)
Abstract

Cultivation of rapeseed as the second crop requires drainage systems in most of the paddy fields of the Guilan province. Mole drainage, as a low-cost and shallow drainage method that is suitable for rice cultivation conditions and easier to implement than pipe drainage, can be a solution in the development of second-crop cultivation. The present study was conducted to evaluate the drainage of mole drainage and nitrogen fertilizer management on the quantity and quality of drainage at Guilan University. In this regard, an experiment was conducted under two treatments including drainage and nitrogen fertilizer (i.e. traditional mole drainage and sand-filled mole drainage), and 180 and 240 kg of nitrogen fertilizer per hectare in three replications. After each rainfall during the plant growth period, water samples were taken from the drains, and parameters of electrical conductivity, pH, total suspended solids, total phosphorus, turbidity, concentrations of ammonium, chloride, nitrite, nitrate, and phosphate were measured. Also, the outflow from the drains and the water table level were measured by piezometers during the rain and after that. The results of the mean comparison of pH and total suspended solids showed that most of them were obtained with 7.49 and 281.25 mg/liter, respectively, in the mole drain filled with sand and the traditional mole drainage and 180 fertilizer treatment. The highest mean of electrical conductivity and turbidity was observed as 651 micro mohs/cm in the traditional mole drainage and 240 fertilizer treatment and with 67.76 NTU in the traditional mole drainage and 180 fertilizer treatment. The statistical analysis showed that the effect of drainage treatment on the amounts of ammonium, nitrite, nitrate, phosphate, and total phosphorus was not significant. The outflow from the traditional mole drainage was 49% lower than the sand-filled mole drainage. The traditional and sand-filled mole drains were able to drain excess water with average reaction coefficients of 0.8 and 0.83 per day during the growth period, respectively. Considering the speed of water discharge, drain discharge, and the main non-significance of qualitative parameters among drainage treatments, mole drainage filled with sand is recommended for the development of rapeseed cultivation in paddy fields.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb