Search published articles


Showing 3 results for Drainage.

M. R. Yazdani, M. Ghodsi, S. F. Mousavi,
Volume 11, Issue 1 (4-2007)
Abstract

Cultivation of a second crop in paddy fields of Guilan province is a strategy for optimum use of land, supporting family economy and increasing oil-seed production. However, this is impeded under high rainfall and waterlogging conditions. To enhance second-crop cultivation in paddy fields, surface drainage is inevitable. The surface drainage practices should be performed with minimum costs, least time span and least variations of the land. In the present research, longitudinal surface drains were constructed with a spacing of 2, 4, 6, 8 and 10 m (depth of 20 cm), with and without 1-m lateral drains (depth of 10 cm) in Rice Research Institute, Rasht, Iran. The experiment was conducted in a complete randomized block design with three replications. Canola (Brassica napa), variety PF, was cultivated as a second crop after rice. The results showed that the effects of drain spacing on seed yield, days to maturity, number of plants per m2, and also the effects of lateral drainage on seed yield, plant height, residual N, days to maturity, and number of plants per m2 are significant (P<0.01). Highest yield (2493 kg/ha) was obtained from longitudinal drains 4 m apart, with lateral drainage drain spacing of 6 and 2 m had acceptable yields, too (2241 and 1817 kg/ha, respectively). For treatments without lateral drainage, 2-m drain spacing had the highest yield (1324 kg/ha). Considering all the expenses for drainage construction, it was found that net benefit of longitudinal drain spacing of 4 and 6 m was twice the costs. Since the rainfall in Nov., Dec., and Jan., 2000, was higher than the 20-year average rainfall of the same months, it was concluded that the results of this experiment may be recommended in the years with a rainfall less than the year 2000.
J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (3-2013)
Abstract

Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
M. Noshadi, M. Jamaldini, A. Sepaskhah,
Volume 19, Issue 71 (6-2015)
Abstract

In this research, the hydraulic behavior of two kinds of envelopes including synthetic envelope, PP450 and gravel envelope with USBR standard in two soil tank models with silty loam texture was investigated. Three water heads including 55, 75 and 105 cm (water logging) from drain level were used. The discharge of pipe drain in the steady state condition for gravel envelope and at 55, 75 and 105 cm water heads was 188.9, 172.0 and 897.0% more than those in PP450, respectively. Envelope hydraulic conductivity rates at gravel envelope for 55, 75 and 105 cm water heads were 24.6, 14.0 and 21.2 times higher than those in PP450, respectively, and gradient ratios in these water heads for gravel envelope were 14.5%, 2.8% and 14.2% lower than those for synthetic envelope. There were also different behaviors in the two kinds of envelopes for hydraulic conductivity and entrance resistance of pipe and envelope in 55 and 75 cm water heads relative to 105 cm. In general, according to the measured parameters in this research, gravel envelope showed a better performance.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb