Search published articles


Showing 2 results for Dry Farming

A. Ahmadi Iikhchi, M. A. Hajabbassi, A. Jalalian,
Volume 6, Issue 4 (1-2003)
Abstract

Cultivating rangeland to be shifted to crop land farms commonly causes soil degradation and runoff generation. This study was conducted to evaluate the cultivation effects on runoff generation and soil quality. The experiment was performed in a rangeland and a 40-year cultivated land located at two slope positions (back slope and shoulder) of a hillside in Dorahan, Chaharmahal & Bakhtiari Province. A 60±5 mm.hr-1 rainfall intensity was simulated by a rainulator. Organic matter, mean weighted diameter, saturated hydraulic conductivity, collected runoff and sediments were measured. The differences between the means were tested using T-test. Results showed 35, 53 and 8% increases in the organic matter, mean weighted diameter, and saturated hydraulic conductivity in back slope, respectively. The increases in these parameters in shoulder position were 39, 60 and 33%. The values for runoff and sediments in back slope were 3 and 8 times greater than in other similar positions while the values in the shoulder position were 11 and 55 times greater than the same values in other positions.
Z Amini, R Hadad, F Moradi,
Volume 12, Issue 46 (1-2009)
Abstract

The effects of irrigation, dry farming and drought treatments on the activities of antioxidant enzymes including superoxide dismutase, ascorbate peroxidase, catalase and peroxidase in barley leaves at different generative growth stages under field conditions were investigated. Three senescence parameters including chlorophyll, total soluble protein and rubisco large subunit protein loss, were also studied in order to compare our results to those reported by other researchers. The results showed that leaf relative water content (RWC), chlorophyll and total soluble protein and rubisco large subunit protein content declined with leaf age and the effect of water deficit. The activity of superoxide dismutase declined with the progress of the leaf age on all treatments but ascorbate peroxidase activity declined with leaf age only in irrigated (control) plants. There were no significant differences among developmental stages in catalase activity in control plants, while catalase activity declined in the water dry farming and drought stress conditions. Peroxidase activity increased with the progress of senescence for all of treatments in such conditions. Water deficit stress triggered increases in antioxidant enzymes activities. Results showed that among all studied enzymes, peroxidase has a key role in increasing resistance to oxidative stress on both the senescence stages and drought stress condition in Hordeum vulgare.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb