M.r. Tadayon, Y. Emam,
Volume 11, Issue 42 (1-2008)
Photosynthesis and wheat grain yield responses to supplemental irrigation with different amount of applied water under dryland conditions were investigated. Therefore, a two-year field experiment was conducted research farm of College of Agriculture, Shiraz University during 2004-2005. Five levels of irrigation including dryland conditions, irrigation at stem elongation, booting, flowering and grain filling were main plots and two wheat cultivars: Agosta and Fin-15 were subplots, and three rates of nitrogen including zero, 40 and 80 kgha-1 were sub sub-plots. The results showed that in both years, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate, were significantly higher under irrigation at stem elongation stage compared to other supplemental irrigation treatments. In all of the four supplemental irrigation treatments, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate decreased with decreasing the amount of applied water to each plot. In both years, the highest grain yield was obtained from supplemental irrigation at stem elongation stage, and the lowest yield was harvested at dryland conditions. The highest photosynthetic parameters, yield and yield components were obtained from interaction of supplemental irrigation at stem elongation stage × Fin-15 and 80 kg N ha-1 in both years. The supplemental irrigation in 2004 and 2005 increased the grain yield 200 and 221 percent, respectively, compared to dryland conditions. Thus, supplemental irrigation at sensitive stem elongation stage could affect significantly wheat grain yield of rainfed wheat cultivars and provision of adequate water for a supplemental irrigation at the appropriate growth stage could double the grain yield of rainfed wheat.