Search published articles


Showing 2 results for Effective Length

H. Azarpeyvand, A. R. Emadi, M. Sedghi Asl,
Volume 23, Issue 1 (6-2019)
Abstract

Labyrinth weirs are the economic structures to increase the weir output efficiency in limited widths, which can be seen in the plane f trapezoidal and triangular forms. These weirs with a hydraulic load and fixed width pass the more discharge in comparison to other type of weirs. In this study, labyrinth weirs trapezoidal in plane form were investigated. The experiments were performed on 27 laboratory models with 9 different discharge rates and a total of 243 tests. The results showed that, in all of the composite trapezoidal labyrinth weirs, the ratio of discharge coefficient to Ht/p (Ht: Total hydraulic load and p: weir length) weir length was increased at first; after reaching the maximum rate, it started to decrease. According to the suggested general relation, the utmost impact on discharge coefficient resulted from the cycle number and  Ht/p relation. Creating new labyrinth on the wing of the weir led to the increase of the effective length; as a result of it, the discharge rate increased in a specific amount of Ht/p. Also, the discharge through a trapezoidal labyrinth weir with the semicircular planform was better than the square; the square, in turn, was better than the simple trapezoidal weirs.

A. R. Bahrebar, M. Heidarnejad, A. R. Masjedi, A. Bordbar,
Volume 25, Issue 2 (9-2021)
Abstract

The combination of a labyrinth weir with an orifice is a proper solution for floating material to pass over the weir and transfer sediment through the orifice. Additionally, creating a slot in the overflow wing leads to higher discharge. This study examined four discharges (5, 10, 15, and 20 liters per second) with channel width and height of 30 and 40 cm in trapezoidal-orifice, square-orifice, and triangular-orifice labyrinth weirs in the laboratory and using Flow3D with RNG k-epsilon (k-ε) turbulence model, the results were compared with one another. Comparing the discharge flow over weirs and measuring the discharge coefficient among the mentioned models showed that the triangular-orifice labyrinth weir had the highest discharge rate. Moreover, the increased Ht/P ratio (Ht represents total hydraulic head; P denotes weir height) for all models resulted in the increased discharge coefficient. Due to the efficiency of this type of weirs, the highest discharge coefficient was obtained at low Ht/P ratios. At lower ratios, since there was free flow, the coefficient of weir discharge increased, and as the ratio increased, the weir was partially submerged. Furthermore, for the weir design, the best Ht/P ratio was between 0.13 to 0.41, and the maximum discharge coefficient (Cd = 1.2) was within this range.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb