Search published articles


Showing 16 results for Efficiency.

B. Mostafazadeh, M. Farzamnia,
Volume 4, Issue 3 (10-2000)
Abstract

In this research, the hydraulic behavior of furrow irrigation was investigated under cut-back, Walker-Skogerboe and conventional methods at the three experimental farms of Lavark, Shervedan, and Isfahan University of Technology for three irrigation events. In each farm, data were collected for each of the above methods with at least three replications including furrow shape, furrow length, furrow slope, soil texture, advance and furrow inflow and outflow.

 The parameters of Kostiakov-Lewis infiltration function were determined using the volume balance method. The deep percolation ratio, runoff ratio and application efficiency were then computed.

The results showed that deep percolation ratio was higher in the cut-back method as compared to the Walker-Skogerboe method (18.6% as compared to 13.7%) and the runoff ratio was less in the cut-back method as compared to those in the Walker-Skogerboe and conventional methods (12.4% as compared to 16 and 20.6%, respectively). The effect of the two parameters of deep percolation ratio and runoff ratio caused, in general, the application efficiency to be less in the conventional method than those in the cut-back and Walker-Skogerboe methods (42.7% as compared to 69 and 70%, respectively). In general, the cut-back method had a higher application efficiency in heavy texture soils as compared to light texture soils (73.9% as compared to 51.2%).


J. Torkamani,
Volume 4, Issue 3 (10-2000)
Abstract

The main objective of the present study was to investigate the production and marketing of Iranian saffron. About 99% of Iranian saffron is produced in Khorasan Province. Therefore, Khorasan was selected for the current study. Data were collected through the stratified random sampling method from 232 saffron producers in Torbat Heidarieh, Ghaenat and Gonabad regions through interviews in fall 1999. The production functions of saffron were estimated by using transcendental forms for the three study regions. Technical efficiencies for saffron producers were estimated using transcendental stochastic frontier production functions. Finally, wholesale, retail and marketing margins as well as marketing efficiency were estimated.

The results of the current study revealed that farmers were not using some of the inputs optimally. Study of the technical efficiency of saffron growers indicated that there was a considerable possibility of increasing production by increasing farmers’ efficiencies. The average of wholesale, retail and marketing margins of one kilogram of saffron were estimated to be 483, 410 and 893 thousand Rials, respectively, in the three study regions. Also, marketing efficiency was calculated at 155%. Finally, a marketing channel as a part of marketing strategy was proposed for Iranian saffron.


B. Hatami, H. Ghahari,
Volume 5, Issue 3 (10-2001)
Abstract

Regarding the importance and high potential of Encarsia formosa Gahan (Hymenoptera: Aphelinidae) for control of the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae), the effect of different diets and storage of the parasitoid at low temperatures on its longevity and efficiency was studied. The average longevity of the parasitoid on different diets including honey-syrup 15%, honey-syrup 10%, sucrose syrup 15%, honeydew of whitefly were significantly different at 1% from distilled water and control (without water and food) treatments.

Change in honey-syrup concentration at a range of 5% did not affect the longevity of the parasitoid. The honeydew and sucrose-syrup treatments were not significantly different. This was probably due to the relative similarity of food quality of these two diets. Storage of host parasitized nymphs containing pupae of 1-2 days-old of E. formosa at 8±1°C affected the emergence rate and efficiency of adult parasitoids.

Four treatments including the pupae of parasitoids in 4th nymphal instars of the greenhouse whitefly were stored at 8±1°C for 5, 15, 25 and 35 days. Control treatment included pupae of parasitoid that were held at room temperature, 24±4°C. Host nymphs were parasitized by the parasitoids emerging from all treatments. The average parasitized nymphs by parasitoids emerging from 5, 15 days and control treatments were not significantly different at 1 %.


H. Ghadiri, M. Majidian,
Volume 7, Issue 2 (7-2003)
Abstract

In order to investigate the effects of different nitrogen fertilizer levels and water stress during milky and dough stages on grain yield, yield components and water use efficiency of corn hybrid SC 704 (late maturing, non prolific and dent type), a field study was conducted. The factorial design of the study comprised of a randomized complete block with four replications. Four levels of nitrogen fertilizer (0, 92, 184 and 276 kg/ha nitrogen) along with three levels of irrigation (water stress imposed at milky stage, dough stage and a season-long optimum irrigation) were used as treatments. Results showed that water stress during milky and dough stages significantly decreased grain yield and thousand kernel weight. Also, effect of nitrogen fertilizer on grain yield, kernel number per ear, kernel weight per ear and thousand kernel weight was significant. Maximum grain yield was produced with 276 kg/ha nitrogen, although no significant differences were found among 92, 184 and 276 kg/ha nitrogen levels. Regarding water use efficiency during water stress, maximum efficiency was observed at milky stage but, as water stress declined with optimum irrigation, water use efficiency decreased.
Gh. Khajouei Nejad, H. Kazemi, H. Alyari, A. Javanshir, M. J. Arvin,
Volume 9, Issue 4 (1-2006)
Abstract

This study was conducted to evaluate the effects of four levels of irrigation (irrigation of plants after I1 = 40, I2 =60, I3 = 80 , and I4 = 100mm of evaporation from class A pan) and four plant densities(D1 = 30, D2 = 40, D3 = 50 and D4 = 60 plants/m2) on the seed yield and seed quality in three soybean cultivars(V1=Hobit, V2=Williams and V3=Hill) in a split factorial design, based on the completely randomized blocks, with three replication for two years(2001 and 2002). The Irrigation treatments were assigned to the main plots, and the plant densities and cultivars to the sub plots. Results indicated that soybean seed yield was influenced by the different irrigation and plant density levels in the both years. Irrigation levels I2 produced the highest and I4 the lowest seed yield. It was also revealed that the plant density D3 produced the highest and D1 the lowest seed yields. Among the cultivars under investigation, V2 produced the highest and V3 the lowest seed yield . Seed oil and its protein contents both were affected significantly by the irrigation levels, plant densities and cultivars in both years. The plants receiving I1 treatment had the highest and those having I4, the lowest percentages of seed oil. Changes in the plant densities also affected seed oil and protein content. The plant density of D1 caused the seeds to have the highest oil and lowest protein percentages. However, D4 decreased oil and increased protein percentages. The highest water use efficiency was obtained from I3 and that of the lowest value from I1. The results also indicated that D4 had the highest and D1 the lowest water use efficiencies. Therefore, it could be concluded that the water use efficiency can be increased by increasing the plant density per unit area. The highest efficiency for biological and grain yield belonged to V2 and V1 respectively where as the lowest efficiency for those two mentioned characters belonged to V1 and V3, respectively. However, the treatment I2V2D2 is recommended for higer the seed yield production per unit area.
R. Hajiboland, S.y. Salehi, T. Aghajan-Zadeh, M. Abhari, E. Nazifi,
Volume 11, Issue 1 (4-2007)
Abstract

Zn deficiency is one of the most important nutritional disorders after macro-nutrients in rice. There are considerable genotypic differences among rice genotypes in response to Zn deficiency. Determination of such differences and introduction of efficient genotypes could lead to significant reduction of fertilizer use for rice production. In this research, some of the most frequently cultivated rice genotypes in Northern Iran, were compared for their tolerance to Zn deficiency in a field (11 cultivars) and hydroponic (16 cultivars) experiment. Four levels of Zn fertilizer were used in field experiment including 0 (control), 25, 50 and 100 kg ha-1 and three different activity of Zn in chelator-buffer experiment including 130 (control), 23 and 5 pM. Experiments were conducted using complete randomized block design and data was analyzed using two factorial analysis of variance including Zn level and genotypes. In addition to yield components in the field study and dry matter production in the hydroponic culture medium, concentration of Zn was also determined in shoot, root and seed. The comparison of all yield components showed that the cultivar Onda was the most Zn-inefficient (susceptible to Zn deficiency) and Khazar was the most Zn-efficient (tolerant to Zn deficiency) genotypes under field conditions. In hydroponic experiment, cultivars Fajr, Tarom Hashemi and Onda were determined as the most Zn-inefficient and Shafagh, Amol and Mianeh were recognized as the most Zn-efficient genotypes. The most significant response to Zn fertilizer, in terms of Zn accumulation in seeds, was observed in Nemat and Tarom Deilamani. In contrast, Cadoos accumulated Zn mostly in straw. Results of our experiments introduced not only the genotypes with the highest yield on soils low in available Zn, but also genotypes with the highest Zn accumulation in seeds in response to Zn fertilizers which are important for human nutrition.
M. Yasi, M. Mohammadi,
Volume 11, Issue 41 (10-2007)
Abstract

  A labyrinth spillway is an overflow spillway to regulate and control flow in canals, rivers and reservoirs. The main hypothesis for the development of such a spillway is to increase the discharge per unit width of structure for a given headwater. This type of structure is often an efficient alternative to a gated-spillway type where either the increase of the flood-passage capacity or the control of the water surface upstream is concerned. This study was aimed to investigate the hydraulic performance of labyrinth spillways of general trapezoidal planform with simple curved apexes. In the experimental work, twelve spillway models with double cycles were considered using three different curved apexes (R/w= 0.15, 0.2, 0.25), each with four different crest heights (w/P= 1.5, 2, 3, 4). Based on the cited recommendations, the length magnification was set to a constant ratio of (l/w= 3) the crest shape was to be of a semi-circular form with simple radius (r= 15 mm) and the spillway walls were vertical with the thickness of T= 2r. An intensive experiment was carried out over a wide range of flows, providing 720 flow data ranging from free flow to submerged flow conditions. 1D flow equation was presented using combined mathematical and dimensional analysis. A coefficient of discharge, Cd, was introduced to represent the influence of the effective geometric and hydraulic parameters on the flow capacity over the spillway. Modular limit was also controlled to see whether the flow over the spillway would be submerged. The results of the study indicate that the modified curved planform of the spillway apexes with consistent divergence in the downstream channel introduces a significant improvement in the flow efficiency over the labyrinth spillways. Spillways with narrower curved apexes (i.e. R/w≤ 0.2), and with the vertical-aspect ratio of (2≤w/P<3) provide more stable and higher hydraulic performance than any other labyrinth planforms over a wide range of flows (i.e. 0.10/P<0.6). In terms of the flow capacity, the proposed spillway model is shown to be more efficient than other zig-zag planforms (i.e. triangular and trapezoidal shapes) with an identical crest length.


S. Akhavan, S. F. Mousavi, B. Mostafazadeh-Fard, A. Ghadami Firoz Abadi,
Volume 11, Issue 41 (10-2007)
Abstract

To investigate yield and water use efficiency (WUE) of potato with tape and furrow irrigations, an experiment was performed at Hamadan Agricultural and Natural Resources Research Center (Ekbatan station) in 2004. The experiment was arranged in a split-plot experimental design based on completely randomized block with 3 replications of irrigation water amount as the main factor (75%, 100%, 125% of cumulative evaporation from class A pan) and sub-factor of irrigation method [including tapes in the middle of furrow ridge on soil surface (TD0), tapes in the middle of furrow ridge at the depth of 5 cm (TD5), tapes on the sides of furrow ridge on soil surface (TS0), and furrow irrigation (F)]. The results indicated that yield of potato increased with increasing water use. Regardless of irrigation method, maximum (32.51 ton/ha) and minimum (19.33 ton/ha) yield of potatoes was achieved with 125% and 75% irrigation water treatments, respectively. The lowest yield (21.35 ton/ha) was obtained in furrow irrigation and the highest yield (28.91 ton/ha) belonged to tape irrigation (TD5 treatment). The highest WUE (4.68 kg/m3) belonged to tape irrigation (TD5 treatment) and the lowest WUE (3.32 kg/m3) belonged to furrow irrigation (F). The difference in WUE between 75% and 100% irrigation water treatments was not significant. The highest WUE (4.49 kg/m3) was achieved in treatment 125%. Also, it is more economical to use irrigation water treatment of 125%, as compared with other irrigation water treatments.
A Sheinidashtegol, H.a Kashkouli, A.a Naseri, S Boromandnasab,
Volume 13, Issue 49 (10-2009)
Abstract

Sugarcane has been cultivated in an extensive area in Khuzestan and irrigated by hydro-flume or siphon and furrow. In a field experiment during 2005-6 at Amir Kabir Agro-Industry, Khuzestan, the effect of every other-furrow irrigation method was studied on sugarcane in regard to irrigation water volume, water use efficiency and quality and quantity of sugarcane. The experiment was conducted in a completely randomized design with three irrigation treatments, including conventional method (blank), variable every other furrow(alternative furrow) and fixed every other furrow. This experiment was conducted by cv. Cp69-1062 sugarcane. The results showed that water use efficiency rates were 0.41, 0.58 and 0.7 kg/m3 for conventional, fixing furrow and alternative, respectively. However, water use efficiency rates were not significantly different in treatments. It had minimum amount of water use efficiency in every other furrow treatments. Maximum water use efficiency, quality and quantity of sugarcane were obtained every other irrigation. Maximum irrigation water was used in conventional treatment and resulted in minimum irrigation, quality sugarcane and water use efficiency. It produced 14.5 ton/ha sugar for 20604 m3/ha application of irrigation. Sugarcane quality and quantity characteristics in variable treatments, except for length number per hectare, were not significant.
P. Shahinrokhsar, M. E Asadi,
Volume 16, Issue 61 (10-2012)
Abstract

Modification of irrigation scheduling and management improvement of irrigation systems are two essential factors that have significant impact on agricultural water use efficiency. Therefore, a field experiment was conducted to evaluate the effect of tape drip irrigation (T) and furrow irrigation systems (S) under different irrigation regimes on yield and yield components of soybean in growing season of 2006-2007 at Gorgan Agricultural Research Station in north part of Iran. The experiment was laid out in a split plot design in a randomized complete form where each treatment was replicated three times. The main plots were irrigation systems of tape and furrow, and three irrigation regimes 100 (I100) , 75 (I75) and 50 (I50) percent of total irrigation requirement were chosen as secondary plots. Results showed that thousandgrain weight (gr) and plant height (cm) in furrow irrigation were significantly more than the tape drip irrigation method. Also significant differences between different irrigation regimes in terms of plant height, node numbers and yield were observed. So, I100 and I50 had highest and lowest values, respectively. In terms of irrigation system, 63 percent of water consumption was reduced in tape drip irrigation method. Also, the results indicated that higher and lower water use efficiencies were obtained from tape drip irrigation method with I50 treatment (1.09 kg m-3) and furrow irrigation with I100 treatment (0.50 kg m3), respectively.
A. Vaezi, M. Abbasi,
Volume 16, Issue 61 (10-2012)
Abstract

The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff from rainfall events. The ratio of initial abstraction (λ=Ia/S) to maximum potential retention (S) was assumed in its original development to be equal to 0.2 (λ=Ia/S=0.2) in SCS-CN method. Application of the initial abstraction ratio equal to 0.2 out of the area where it has been developed may lead to a non logical estimation of runoff. Thus, the study was conducted to determine the initial abstraction ratio (λ=Ia/S) by analyzing measured rainfall-runoff events. The dataset consisted of 58 rainfall-runoff events during 15 years (1987-2001) of rainfall and runoff measurements from Taham-Chay watershed, northwest of Zanjan, Iran. Based on the results, the estimated runoff value on the basis of Ia= 0.2S was 26.7 times higher than the measured value, on average. There was a very low relationship between the measured and estimated runoff values (R2=0.09) and mean model error was 0.13. The Ia/S values varied from 0.004 to 0.008 with an average of 0.006. When Ia/S value was modified to 0.08, ratio of the measured to estimate runoff value was 1.4 and the determination coefficient (R2) of the relationship between the two was 0.41. When seven rainfall events that had the low rainfall intensity values (lower than 0.14 mm/h) and two events that had the high rainfall depth (bigger than 10.47 mm) during the past five days were removed from the data analysis process, ratio of the measured to estimated runoff value decreased to 1.3 and the determination coefficient (R2) of the relationship between the two enhanced to 0.90. The mean model error for the modified Ia/S value also decreased to 0.007. It also improved model efficiency coefficient (EF) to -0.089 compared with 0.91 for traditional Ia/S value (0.2).
Vajiheh Dorostkar, Majid Afyuni, Amirhossein Khoshgoftarmanesh,
Volume 17, Issue 64 (9-2013)
Abstract

Limited information is available about the effect of preceding crop residues on bioavailability of zinc (Zn) in calcareous soil and its accumulation in wheat grain. In this experiment, residues of five crops including safflower (Carthamus tinctorius L.), sunflower (Helianthus annuus L.), bean (Phaseolus vulgaris L.), clover (Trifolium pretense L.) and sorghum (Sorghum bicolor L.) were incorporated into a calcareous Zn-deficient (0.5 mg kg-1) soil. A treatment without crop residue was also used in the experiment. This experiment was conducted in research greenhouse of Isfahan university of technology in 2010. Two wheat cultivars (Triticum aestivum cvs. Backcross and Kavir) differing in Zn-efficiency were studied in the experiment. Incorporating crop residues into the soil resulted in an increase of grain Zn concentration in both wheat cultivars although this increase was dependent on the preceding crop type. The greatest increase of grain Zn concentration occurred in the sorghum residues treatments. Although application of crop residues significantly decreased grain phytic acid to Zn molar ratio (as Zn bioavailability criteria for consumers), this ratio was still higher than 15, the critical Zn bioavailability level for consumers in foods. According to the results, despite the increase in the total Zn content, the bioavailability of Zn in wheat grain was not affected by crop residue treatments.
L. Divband, S. Boroomand Nasab, M. Behzad, J. Abedi Koupai,
Volume 17, Issue 65 (12-2013)
Abstract

Heavy metals in water resources are one of the most important environmental problems in most of countries. Up to now, various methods for removing these metals including using low price materials have been used. In this study, two new absorbents (zizyphus spinachristi leaf and its fly ash) were studied for adsorption of cadmium from aqueous solutions using batch experiments. The effect of contact time, pH, and amount of adsorbent on adsorption efficiency was evaluated and the best kinetic and isotherm model was determined. Results showed that optimal absorption of pH was 5 and 6 for zizyphus spinachristi leaf and its fly ash, respectively. The equilibrium time was 45 min for zizyphus spinachristi leaf and 30 min for ash. Adsorption efficiency was increased by increasing the adsorbent dose. By comparing the parameters of isotherm models, it was observed that the cadmium adsorption capacity of fly ash (4.27 mg/gr) was higher than that of zizyphus spinachristi (3.91 mg/gr).
S. Samadvand, M. Tajbakhsh, K. Anvari, J. Ahmadaali,
Volume 18, Issue 70 (3-2015)
Abstract

An experiment was performed at the Miyandoab Agricultural Research Station to study yield and water use efficiency of furrow and tape irrigation systems in one-row and two-row planting patterns, and to investigate density of grain corn SC704. The experimental design was a completely randomized block arranged in Strip Split Plots with three replications in 2010. Irrigation treatments were applied in vertical plots, and planting arrays of different densities were applied in horizontal plots in the form of split plots. The vertical plots were comprised of four irrigation treatments, including three levels (80%, 100% and 120%) of water requirement by use of drip tape irrigation and 100% of water requirement in furrow irrigation, and the horizontal factor was a planting array in the form of single-row and two-row planting patterns and the sub factor was comprised of three levels: 75, 90 and 105 thousand plants per hectare. The results showed that furrow irrigation had the highest rate of grain yield, about 18.6 ton per hectare, and the treatments of tape irrigation of 120%, 100% and 80% had 18.4, 18.2 and 14.9 tons per hectare, respectively. Although the furrow irrigation treatment had higher yield than the rest, there was no significant difference between treatments except for the 80% of tape irrigation. Thus, by utilizing tape irrigation without a great decrease in the yield, water use efficiency improved. The comparison between treatments of tape irrigation of 80%, 100%, 120% and furrow irrigation led to grain yields of 2.3, 2.2, 1.9 and 1.4 kg/m3, respectively. Also, the highest water use efficiency and maximum yield were obtained from 90000 plants per hectare.


F. Sajadi, H. Sharifan, S. Jamali,
Volume 22, Issue 3 (11-2018)
Abstract

Yield is a function of root distribution and activity. In flood conditions, root growth and efficiency are essential for crop productivity. The goal of this study was to investigate the effect of different irrigation regimes on the root development, yield and yield components of green pepper (green Hashemi cultivars). This study, which was based on a completely randomized design with three replications under greenhouse conditions, was done at Gorgan University of Agricultural Sciences and Natural Resources in 2016. Different irrigation regimes consisted of 3 levels (100, 125 and 150 percent of water requirement). The results showed that the effect of different irrigation regimes on root volume, root length, root area and number of fruit was significant at 1 percent level (P<0.01), but water use efficiency, and fresh and dry weight of fruit were significant at 5 percent level (P<0.05). The results also revealed that green pepper plants were sensitive to over irrigation. Increasing irrigation levels from 100 to 125 percent of pan evaporation resulted in the reduction of root volume, root length, water use efficiency, number of fruits, and pepper fresh weight to 20, 13.8, 26, 29and 6.4 percent, respectively. As the conclusion, with the increase in water irrigation level, the fresh weight of the fruit was significantly decreased.

M. Amerian, S. E. Hashemi Garmdareh, A. Karami,
Volume 24, Issue 3 (11-2020)
Abstract

Today, one of the biggest challenges facing the world is the lack of water, especially in the agricultural sector. In this research, we investigated the effects of irrigation method and deficit irrigation with the urban refined effluent on biomass, grain yield, yield components and water use efficiency in single grain crosses 704 maize. This research was carried out in a randomized complete block design with two irrigation systems (furrow irrigation (F) and drip irrigation (T)) and three levels of deficit irrigation treatments of 100 (D1), 75 (D2) and 55 (D3) percent of water requirements in three replications, in 2017, at the collage of Abourihan Research field, University of Tehran, in Pakdasht County. The results showed that the highest yield of biomass was 2.426 Kg m-2 for full drip irrigation treatments; also, there was no significant difference between D1 and D2 treatments. The highest grain yield was 1.240 kg m-2 for the complete drip irrigation treatment. The highest biomass water use efficiency was obtained for the treatment of 75% drip irrigation, which was equal to 5.3 kg per cubic meter of water. Therefore, a drip irrigation system with 75% water requirement is optimal and could be recommended.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb