Showing 3 results for Electron Microscope
M. H. Salehi, H. Khademi, M. Karimian Eghbal,
Volume 7, Issue 1 (4-2003)
Abstract
Clay minerals have considerable effects on physico-chemical properties of soils. Using different techniques, mineralogy of silicate clays and their formation were investigated in selected soils from Chaharmahal and Bakhtiari Province. The study area is about 1300 ha and its soil moisture and temperature regimes are xeric and mesic, respectively. Geomorphologically, the area consists of different landforms including pediments, outwash, hills and piedmont plain. After field and laboratory studies, five representative pedons were selected in previously determined mapping units and samples were taken for the analyses required. Clay particles from two surrounding rock formations and selected soil samples were separated and examined by electron microscopy (SEM and TEM), X-ray diffraction and infrared techniques.
Illite, smectite, chlorite, palygorskite and kaolinite were present in all the soils. Considering the fact that palygorskite was not observed in nearby rock formations, this mineral is probably formed by pedogenic processes. Smectite, on the other hand, has been inherited from parent materials and also transformed from palygorskite. Other minerals had been probably inherited from parent materials. Infrared spectra confirm the X-ray diffraction and submicroscopic results.
M.r. Ehsani, H. Ezzat Panah, H. Lamea,
Volume 9, Issue 3 (10-2005)
Abstract
In this study changes in microstructure of casein micelles in raw and pasteurized milk were investigated by SEM and TEM. Milk was pasteurized by L.T.L.T. method (Temperature: 63 oC_ Time:30 minute).Samples of raw and pasteurized milk were taken from research pilot plant of The College of Agriculture. Each sample was divided into two parts. One part of each sample was directly prepared for SEM and TEM, whereas the second part were renneted at 2 oC and kept at this temperature for 24 h. and then prepared for evaluation by electron microscopes. Results indicated that in native state, particularly in raw milk casein micelles are in spherical shape with smooth surface and in the single form. The samples, which stored in the cold were under the effect of the rennet, encounter of filamentous status that might be due to the changes occurred in kappa-casein following the action of rennet along with partial removal of beta-casein and micellar calcium phosphate. Micrographs of casein micelles in pasteurized milk indicated that thermal condition during pasteurization had influenced on increasing of casein micelles size.
E. Masoumi, R. Ajalloeian, A.a. Nourbakhsh, M. Bayat,
Volume 26, Issue 3 (12-2022)
Abstract
Since clay is widely used in most construction projects, the issue of improving clay soils has considerable importance. This study aimed to optimize the variables affecting the properties of geopolymer and improve their mechanical properties using Isfahan blast furnace slag. Taguchi's statistical design method was used to model three process variables (blast furnace slag, water, and alkali sodium hydroxide agent) with four different values in the mixing design. Geopolymer was used to optimize the uniaxial compressive strength. Sixteen geopolymer compositions determined by mini-tab software were prepared and their uniaxial compressive strength was measured. The obtained results were modeled by analysis of variance, and then the interactions of the three variables on the uniaxial compressive strength of geopolymer were investigated using two and 3D diagrams. Then, the variables were optimized and the proposed values for the optimal sample were examined at temperatures of 25, 50, and 70°C and at times of 3, 7, 14, and 28 days of operation. A comparison of the results predicted by the models and the results of the experiments confirmed the validity of the models. Also, the scanning electron microscopy (SEM) images showed that the porosity will reduce from 7 to 28 days. It indicated that the use of the geopolymerization method has a significant role in stabilizing weak clay soils with low plasticity. The effect of fibers and geopolymer to reinforce was also investigated and for better evaluation, it was compared with soil stabilization with Portland cement. The results showed that in the most optimal geopolymer composition, the bearing resistance of clay has increased by more than 3400%. Meanwhile, fibers along with geopolymer with optimal percentage and length (0.1% by weight of geopolymer composition and length of 12 mm) were able to increase the uniaxial compressive strength of clay by nearly 4000%, which shows the excellent effect of using cellular fibers parameter whit the geopolymer in this research.