Search published articles


Showing 2 results for Electron Microscope

M. H. Salehi, H. Khademi, M. Karimian Eghbal,
Volume 7, Issue 1 (4-2003)
Abstract

Clay minerals have considerable effects on physico-chemical properties of soils. Using different techniques, mineralogy of silicate clays and their formation were investigated in selected soils from Chaharmahal and Bakhtiari Province. The study area is about 1300 ha and its soil moisture and temperature regimes are xeric and mesic, respectively. Geomorphologically, the area consists of different landforms including pediments, outwash, hills and piedmont plain. After field and laboratory studies, five representative pedons were selected in previously determined mapping units and samples were taken for the analyses required. Clay particles from two surrounding rock formations and selected soil samples were separated and examined by electron microscopy (SEM and TEM), X-ray diffraction and infrared techniques. Illite, smectite, chlorite, palygorskite and kaolinite were present in all the soils. Considering the fact that palygorskite was not observed in nearby rock formations, this mineral is probably formed by pedogenic processes. Smectite, on the other hand, has been inherited from parent materials and also transformed from palygorskite. Other minerals had been probably inherited from parent materials. Infrared spectra confirm the X-ray diffraction and submicroscopic results.
M.r. Ehsani, H. Ezzat Panah, H. Lamea,
Volume 9, Issue 3 (10-2005)
Abstract

In this study changes in microstructure of casein micelles in raw and pasteurized milk were investigated by SEM and TEM. Milk was pasteurized by L.T.L.T. method (Temperature: 63 oC_ Time:30 minute).Samples of raw and pasteurized milk were taken from research pilot plant of The College of Agriculture. Each sample was divided into two parts. One part of each sample was directly prepared for SEM and TEM, whereas the second part were renneted at 2 oC and kept at this temperature for 24 h. and then prepared for evaluation by electron microscopes. Results indicated that in native state, particularly in raw milk casein micelles are in spherical shape with smooth surface and in the single form. The samples, which stored in the cold were under the effect of the rennet, encounter of filamentous status that might be due to the changes occurred in kappa-casein following the action of rennet along with partial removal of beta-casein and micellar calcium phosphate. Micrographs of casein micelles in pasteurized milk indicated that thermal condition during pasteurization had influenced on increasing of casein micelles size.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb