P. Mohit-Isfahanii, V. Chitsaz,
Volume 27, Issue 1 (5-2023)
Introducing reliable regional models to predict the maximum discharge of floods using characteristics of sub-basins has special importance in terms of flood management and designing hydraulic structures in basins that have no hydrometric station. The present study has tried to provide appropriate regional flood models using generalized linear models (GLMs) to estimate 2-, 10-, 50-, and 100-year maximum daily discharges of 62 sub-basins in Great-Karoon and Karkhe basins. According to the results, the sub-basins were categorized into four sub-regions based on some physiographic and climatic characteristics of the study sub-basins. The results showed that regional flood modeling was successful in all sub-regions except sub-region II, which includes very large basins (A̅≈17300 km2). The adjusted R2 of the best models in sub-regions I, III, and IV were estimated at around 82.4, 91.3, and 90.6 percent, and these models have a relative error (RRMSE) of around 9.5, 9.23, and 6.7 percent, respectively. Also, it was found that more frequent floods with 2- and 10-year return periods are influenced by properties such as basin’s length, perimeter, and area, while rare floods with 50- and 100-year return periods are mostly influenced by the river systems characteristics such as the main river length, total lengths of the river system, and slope of the main river. According to the research, it can be stated that the behavior of maximum daily discharges in the study area is extremely influenced by the different climatic and physiographic characteristics of the watersheds. Therefore, the maximum daily discharges can be estimated accurately at ungauged sites by appropriate modeling in gauged catchments.