Search published articles


Showing 4 results for Energy Balance

N. Moshtagh, R. Jafari, S. Soltani , N. Ramezani,
Volume 19, Issue 73 (11-2015)
Abstract

Spatial estimation of evapotranspiration (ET) rates is essential for agriculture and water resources management. This study aimed to estimate ET v an ET estimation algorithm called Surface Energy Balance Algorithms for Land (SEBAL) and also by using TM June 2009 satellite data in Damaneh region of Isfahan province. To calculate the ET, all the energy balance components and related parameters including net radiation, surface albedo, incoming and emitting shortwave and longwave radiation, surface emissivity, soil heat flux, sensible heat flux, NDVI vegetation index, Leaf Area Index(LAI),  and surface temperature were extracted from the geometrically and radiometrically corrected TM images. Results showed that ET rate was about 7.2 mm day-1 in agricultural areas, which was almost equal to 6.99 mm day-1 extracted from the FAO Penman-Monteith method in the synoptic weather station of Daran. Results here indicate that the extraction of ET rate which is almost equal to plant water requirements from remote sensing data can be used in selecting appropriate plants for agriculture and rehabilitation purposes in extensive arid and semi-arid regions of Isfahan province where severe droughts and water shortage are major problems.


A. Morshedi, M. Naderi, S. H. Tabatabaei, J. Mohammadi,
Volume 21, Issue 2 (8-2017)
Abstract

Conventional methods for estimating evapotranspiration are based on point measurement and suitable for local areas, therefore, cannot be generalized for larger areas or watershed basins. The remote sensing technology is capable of using satellite images and meteorological data to estimate evapotranspiration in a wider area. In this study, estimates of evapotranspiration (ET) by SEBAL and METRIC models based on Landsat 7 ETM+ sensor were compared against ET measured by lysimeter on seven satellites passing time over Shahrekord plain located in Karun basin. The results showed that the lowest indices of NRMSE, MAE and MBE (respectively, 0.317, 1.503 and -0.973 mm per day) and the maximum of d index (0.768) belonged to SEBAL. These indices were 0.420, 2.120, 2.023 and 0.646 for METRIC, respectively. The results showed that the SEBAL was more accurate than METRIC model for estimating ET under Shahrekord plain conditions. As long as the possibility of getting complete hourly meteorological data be provided, or some modifications on METRIC model were done, SEBAL show closer results to reality, and therefore is recommended.
 


A. Morshedi, M. Naderi, S. H. Tabatabaei, J. Mohammadi,
Volume 21, Issue 3 (11-2017)
Abstract

This study was designed to investigate the possibility of using the surface energy balance algorithm for land (SEBAL) and mapping evapotranspiration at high resolution with internalized calibration (METRIC) models to estimate evapotranspiration (ET) in Shahrekord  plain (Chaharmahal va Bakhtiari province, Iran). Two sets of Landsat ETM+ data dated June 30th and August 21st, 1999 were provided to estimate and compare reference evapotranspiration (alfalfa) at regional scale using Landsat ETM+ data to ET estimations by five mathematical methods (experimental and combined) known as standardized Penman-Monteith by American Society of Civil Engineers (ASCE-stPM), Penman-Monteith (F56PM), Blaney-Cridle (F24BC), Hargreaves-Samani (HS) and evaporation pan (F24P). Results showed that ET at cold anchor pixel for SEBAL were 6.97 and 6.77 millimeters per day and for METRIC were 10.27 and 9.31 millimeters per day, on days when the satellite passed over. Hargreaves-Samani ET values, as the suitable mathematical model for the studied area, were 8.0 and 7.5 millimeters per day, respectively, on two satellite passes. Results showed that, in the first pass all statistical indices for SEBAL were less than the second pass, maybe due to higher air temperature and wind speed. On the other way, statistical indices in METRIC on the alternate pass, however, showed higher values over the corresponding values in SEBAL. ET values on two satellite passes for anchor pixels were 5.65 and 5.93 mm/day in SEBAL, and 5.22 and 6.65 mm/day in METRIC, respectively. ET values on the same days of satellite overpass for Hargreaves – Samani (HS) were 8.0 and 7.5 mm/day. Consequently, based on the results, both RS-ET models were comparable to empirical models such as (HS). Generally, the results showed that SEBAL had higher accuracy than METRIC, presumably due to lack of accurate weather data (hourly data), so SEBAL is recommended in similar conditions. Generally, the results showed that SEBAL had higher accuracy in comparison to HS and lysimeters data than METRIC, so SEBAL is recommended in similar conditions.
 
 
 


R. Ziaee, M. Moghaddasi, S. Paimozd, M. H. Bagher,
Volume 22, Issue 4 (3-2019)
Abstract

Evaporation is one of the important components in water body’s management, leading to changes in the water level and water balance. Also, its accurate estimation is faced with certain difficulties and complexities. Because of the limitations of physical and empirical methods based on the meteorological data, remote sensing technology can be widely used for evaporation calculation due to its capabilities for spatial data estimation and minimization of the meteorological data application. Many models have been developed to estimate evapotranspiration using remote sensing technology. Regarding the use of these algorithms for estimating evaporation from water surface, a few studies have been done; however, there is yet no comparison between them to estimate evaporation from the water surface. For this purpose, in this study, the output from two models estimating spatially distributed evaporation of water surfaces from remotely sensed imagery is compared. In order to implement these models, Terra/MODIS Images for four months including June, July, August and September in of 2006, 2007, 2008 and 2009 were prepared. Comparisons were made using pan data from Urmia synoptic station. In general, there was a reasonable agreement between the evaporation outputs from both models versus a pan data observation. The statistical analysis also showed that the SEBS algorithm (by applying the salinity factor), despite being simple in its implementation, has higher accuracy than the SEBAL algorithm.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb