Search published articles


Showing 2 results for Extractable Fe

A. R. Melali, H. Shariatmadari,
Volume 11, Issue 42 (1-2008)
Abstract

  Application of slag and converter sludge, major by-products of Esfahan Zob Ahan factory, to enrich two organic amendments for corn nutrition, was investigated. Farm manure and its vermicompost mixed with different rates of slag and sludge were incubated in 3 Kg pots at field capacity moisture and home temperature for three months. The applied rates of slag and sludge were 0, 5 and 10 percent (w/w) of pure iron from these compounds to the organic amendments. Iron sulfate with the above ratios was also examined for comparison. Sub-samples of the incubated materials were taken after 0, 10, 25, 45, 65 and 90 days of incubation and examined for DTPA extractable Fe, Mn, Zn and Cu. After the incubation, the enriched amendments were applied to a soil sample to grow corn. Three Kg soil samples, taken from Chah Anari experimental farm, Esfahan University of Technology, were mixed with 17 gr of the amendments (50 ton/ha) placed in 3 Kg pots. In each pot two corn seeds (single cross 704) were planted and after 70 days crop yield and concentration of Fe, Mn, Zn, Cu in the plant tissues were determined. Results showed that the use of iron sulfate strongly increased DTPA extractable Fe and Mn of the amendments. In enrichment by converter sludge, the best result was obtained in the mixture of 10 percent pure iron with the vermicompost on 60 days of incubation. Treatment of 5 percent pure iron from slag mixed with the manure increased DTPA extractable Fe and Mn with the time, but the 10 percent treatment was not much effective in this regard. The highest rates of iron uptake by the plants occurred in the iron sulfate and 10 percent converter sludge treatments, respectively however, the highest rate of the plant Mn uptake was observed in 5 percent iron from converter sludge mixed with vermicompost. In general, 10 percent pure iron from converter sludge was the most effective enrichment treatment, increasing the plant uptake of Fe, Mn, Zn and Cu micronutrients.


A. Kazemi, H. Shariatmadari, M. Kalbasi,
Volume 16, Issue 59 (4-2012)
Abstract

Iron deficiency is most widespread among plant nutrients. Nowadays, different materials such as inorganic salts, organic chelates, soil acidifying materials and industrial wastes are used to correct iron deficiency. Slag and convertor sludge of steel factories are among the industrials wastes for this purpose. These materials contain considerable amount of iron produced in large quantities every year. Application of slag and convertor sludge to soil may affect bioavailability and chemical forms of iron in soil. Sequential chemical extraction technique has been widely used to examine these chemical forms, and thus to better understand the processes that influence element availability. It was, therefore, the objective of this study to investigate the application effect of slag and convertor sludge of Esfahan Steel Mill on the chemical forms of iron, distribution of these forms and bioavailability of iron in surface (0-20cm) and subsurface (20-45cm) soil of three research fields. The results showed that more than 99% of the applied Fe occurred in residual, Fe oxide and hydroxide and free forms. Application of slag and convertor sludge for three consecutive years increased chemical forms and DTPA extractable iron in surface and subsurface soil of three fields.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb