Search published articles


Showing 11 results for Fao

B Bakhtiari, A.m Liaghat, A Khalili, M.j Kjanjani,
Volume 13, Issue 50 (1-2010)
Abstract

In this study, the Penman-Monteith methods proposed by the Food and Agriculture Organization (FAO-56) and American Society of Civil Engineers (ASCE) were used for hourly ETo estimation under the semiarid climate of Kerman, Iran. Hourly ETo estimations obtained from the proposed methods were compared with measured ETo values by using a large weighing electronic lysimeter during April to September 2005 (totally 3352 hourly ETo data cases). Simple linear regression and statistical factors such as root mean square error and index of agreement were used for estimated and observed value comparison. The average of measured and estimated hourly ETo values using these methods for integrated data were 0.28 and 0.23 mm hr-1, respectively, which means that average estimated ETo values were approximately 21 percent less than the measured ETo values. This analysis was also performed for hourly data of each month during the study period. The results showed that FAO-56 Penman-Monteith underestimated ETo values by 18.4, 19.3, 26.3, 20.4, 21.4 and 22.1 percent for April to September, respectively, when compared with the measured values. Similarly, the ASCE Penman-Monteith underestimated ETo values by 17, 19.6, 18.4, 18.2, 19.7 and 20.9 percent for the same period, respectively, when compared with the lysimetric data. Finally, a set of regression equation for transformation of the estimated hourly data into the measured hourly ETo values has been presented for each month.
E. Tavakoli, B. Ghahraman, K. Davari, H. Ansari,
Volume 17, Issue 65 (12-2013)
Abstract

Quantitative evaluation of evapotranspiration on a regional scale is necessary for water resources management, crop production and environmental assessments in irrigated lands. In this study, in order to estimate ETo and because of few synoptic stations and also little recorded meteorological data in North Khorasan Province, Iran, with arid and semi-arid climate, 7 stations from neighboring provinces were used. Reference evapotranspiration was calculated using 6 different methods which required a small amount of input data, including Class A pan, Hargreaves-Samani, Priestly-Tailor, Turc, Makkink and the method proposed by Allen et al (1998) to estimate ETo with missing climate data. Besides, the standard FAO-Penman-Monteith was used (because there was no Lysimetric data in the region) to evaluate the applied formulas. Since there was no agreement over the appropriate method to calculate ETo in the selected stations, by using significance test of regression lines, a linear regression equation was computed for each month, in order to convert the best calculating method to FAO-Penman-Monteith formula. Evaluations of these equations showed their acceptable accuracy, in comparison with the previous researches, specifically for cold months (MAE values ranged from 0.3 to 1.4 mm/day).
H. Ghamar Nia, M. Jafari Zadeh, E. Miri, M.e Ghobadi,
Volume 17, Issue 66 (2-2014)
Abstract

The estimation of crop water requirement is one the most important stages for designing different irrigation systems, programming and corrected management of water resources. Therefore, to determine the water requirement for Coriandrum sativum L. a study was conducted in College of Agriculture Research Farm at Razi University in the city of Kermanshah during two years, 2010 and 2011. For this purpose, three water balance drainable lysimeters with the diameter of 1.20m and height of 1.40 m were used. During the investigation, the irrigation was determined by using data logger equipment of (IDRG). The soil humidity was determined in the field capacity condition. The evapotranspiration was calculated using water balance equation. Finally, the Coriandrum sativum L. water requirement was determined to be 722.95 and 580.64mm for years 1388-1389 and 1389-1390, respectively. Meanwhile, the potential evapotranspiration using the Penman Monteith equation was calculated to be 643.58 and 530.17mm for the first and second year of investigation, respectively.
M. Kiani, M. Gheysari, B. Mostafazadeh-Fard, M. M. Majidi and E. Landi, , , , ,
Volume 18, Issue 67 (6-2014)
Abstract

The purpose of this study was to measure daily and seasonal evapotranspiration and daily crop coefficient of two common varieties of sunflower (Sirna and Euroflor) via drip-tape irrigation system. For this purpose, the sunflower water use was determined by daily monitoring of soil moisture at the depths of 10, 20, 30, 40 and 60 cm, and the crop evapotranspiration (ETC) was measured using volume balance method. According to the equation recommended by FAO, the obtained value of KC for Euroflor and Sirna varieties at the initial stage was 0.32. According to volume balance method, the Euroflor KC value for development, middle, and late stages were found to be 0.75, 1.18 and 0.9 and for Sirna were found to be 0.72, 1.15 and 0.84 respectively. Seasonal amount of evapotranspiration for Euroflor and Sirna varieties was equal to 601 and 575 mm, which was 26 and 30 percent less than seasonal ET0 in Isfahan. The average value of during the sunflower growing season was 0.77, which was greater than that offered by Doorenbose and Pruitt (0.55). As the crop coefficients of two varieties were different during the growing season and they were also different from FAO KC, measuring the actual amount of KC as a function of growing degree days can increase the accuracy of the estimated ETc and help develop the crop models in order to improve the irrigation management.
M. Fathi, R. Jafari, S. Soltani,
Volume 19, Issue 71 (6-2015)
Abstract

Desertification is known as a major crisis in arid regions of Isfahan province. This study aimed to assess the performance of three main desertification models including MEDALUS, MICD and FAO-UNEP for mapping desertification severity in the hotspot of Jarghuyeh region, eastern Isfahan. Different desertification indicators and their related indices were chosen based on the characteristics of the region and fieldwork, and spatially mapped in 27 geomorphologic facies. The desertification severity maps were classified based on the classification scheme for each model in ArcGIS 10 environment, and then comparison of the models and selection of the best one were achieved using IDRISI Tiga 16.03 software. The results of all three models showed that more than 95% of the region can be classified as severe desertification but due to the differences in the number of desertification classes and also indicators and indices only 45% of desertification severity was observed to be similar across the models. Results indicated that the MEDALUS model due to its flexibility to accept new indicators and indices, GIS-based characteristics, and use of geometric mean of indicators in desertification mapping seems to be a suitable model for studying desertification severity in the region. According to this model, 85% and 15% of the area are classified as very severe and severe class of desertification, respectively, which indicates that the rate of desertification is very high and immediate management programs are needed to slow down the desertification process in the region.


B. Noori, H. Noori, Gh. Zehtabian, A. H. Ehsani, H. Khosarvi, H. Azarnivand,
Volume 23, Issue 4 (2-2020)
Abstract

Due to the impact of climate change on the plant water demand and the availability of water, especially in drylands, it is vital to estimate the evapotranspiration rates accurately. In this study, the vegetation status in the marginal desert areas of Varamin Plain was studied, and the actual evapotranspiration and water demand of intercropped farms were assessed. This study also evaluated the potential relationship between the evapotranspiration of different agricultural lands and their vegetation index using remote sensing techniques. A collection of satellite images from Landsat 7 in consecutive seasons was used to determine the greenness rate of marginal desert areas during 2013 and 2014. ENVI software was used for the image processing, which included geometric corrections and atmospheric corrections, to develop NDVI maps. Also, weather data and crop properties of Varamin Plain were collected, and the actual evapotranspiration rate of plant cover was estimated using CropWat. The correlation between NDVI extracted from satellite images and the evaluated evapotranspiration rate was assessed. The results showed a strong relationship between evapotranspiration of heterogeneous agricultural lands and NDVI. This confirmed that the NDVI derived by remote sensing approach could be a useful index to evaluate vegetation status and water demand of farmlands in the desert borders.

H. Siasar, T. Honar, M. Abdolahipour,
Volume 23, Issue 4 (2-2020)
Abstract

The estimation of reference crop evapotranspiration (ETo) is one the important factors in hydrological studies, irrigation planning, and water resources management. This study attempts to explore the possibility of predicting this key component using three different methods in the Sistan plain: Generalized Linear Models (GLM), Random Forest (RF) and Gradient Boosting Trees (GBT). The maximum and minimum temperature, mean temperature, maximum and minimum humidity, mean humidity, rainfall, sunshine hours, wind speed, and pan evaporation data were applied for years between 2009 to 2018. Using various networks, the ETo as output parameter was estimated for different scenarios including the combination of daily scale meteorological parameters. In order to evaluate the capabilities of different models, results were compared with the ETo calculated by FAO Penman-Monteith as the standard method. Among studied scenarios, M1 covering the maximum number of input parameters (10 parameters) showed the highest accuracy for GBT model, with the lowest RMSE (0.633) and MAE (0.451) and the maximum coefficient of regression (R = 0.993). Air temperature was found as the most sensitive parameters during sensitivity analysis of studied models. It indicated that accuracy and precision of temperature data can improve the results. Application of the GBT model could decrease the time consumed to run the model by 70%. Therefore, the GBT model is recommended for estimation of ETo in the Sistan plain.

D. Ziaei, R. Zare Bidaki, A. A. Besalatpour, A. Malekian,
Volume 23, Issue 4 (12-2019)
Abstract

To preserve soil as a productive resource, a balance between natural capability and utilization must be established to achieve through land suitability evaluation. The aim of this study was to compare the run-off and deposition of different land uses of Beheshtabad watershed in the current situation and in compliance with standardized land use fitted situation. For this purpose, land use map in its current state was provided using Landsat 7 images and land use suitability map was obtained by FAO (1979) instructions. SWAT model was then applied to simulate runoff and sediment yield by using these land use maps. To do this, the curve number method was used for calculating the runoff, the Muskingam was applied for channel routing, and Hrgrave-samani was employed for potansial evapotranspiration. The results confirmed that considering suitability in using lands in Beheshtabad watershed caused the reduction of the average runoff from 99.4 mm/yr to 82.8 mm/yr (17%) and sediment rate of 10.7 to 7.8 t/ha. yr (27%). Also, the reduction percentage in some land uses, such as dry, irrigated cropland and downstream ranges, was much more.

Y. Sabzevari, M. Saeidinia,
Volume 25, Issue 2 (9-2021)
Abstract

The FAO Penman-Monteith is a baseline method to estimate reference evapotranspiration. In many cases, it is difficult to access all data, so replacing simpler models with ‎lower input data and appropriate accuracy is necessary. ‎ The purpose of this study is to investigate the capability of the experimental ‎models, gene expression programming, stepwise regression, and Bayesian network in estimating ‎reference evapotranspiration.‎ In this research, daily information of the Boroujerd synoptic station in the period of 1996 -2017 was used as model inputs. ‎Based on the correlation between input and output parameters, six input patterns were ‎determined for modeling. The results showed that the Kimberly-Penman model has the ‎best performance among the experimental models.‎ Gene expression programming with fourth pattern ‎‎and Default Model Operators (R2 = 0.98 and RMSE = 0.9), Bayesian Network with sixth pattern (R2=0.91 and RMSE = 1.01), and stepwise regression with sixth pattern have the most accurate patterns at R2 = 0.91 and RMSE = 0.9 in the ‎training stage.‎ Comparison of the performance of the three models showed that the gene expression ‎programming model was superior to the other two models with the Average Absolute Relative Error (AARE) of 0.12 and the Mean Ratio (MR) of 0.94.‎ The results showed that gene expression programming had an acceptable ability to estimate ‎reference evapotranspiration under the weather conditions of Boroujerd and could be introduced as a ‎suitable model.‎

M.j Amiri, M. Bahrami, M. Mousavi Poor, A. Shabani,
Volume 26, Issue 4 (3-2023)
Abstract

Class A pan evaporation method as one of the most common methods for reference evapotranspiration (ET0) estimation has been widely used in the world due to its simplicity, relatively low cost, and ability to estimate daily ET. In this study, the performance of 8 empirical methods consisting of Allen and Pruitt (1991), Cuenca (1989), Snyder (1992), modified Snyder, Pereira, et al. (1995), Orang (1998), Raghuwanshi and Wallender (1998), and FAO/56 were analyzed to estimate class A pan coefficient and ET0 at Fasa synoptic station located in Fars province. The calculated pan evaporation coefficients from the above equations were compared with measured pan evaporation coefficients which were obtained from the ratio of evapotranspiration calculated by the FAO-Penman-Monteith method to the rate of evaporation from the pan. The results showed that all empirical methods did not predict pan coefficient values well (R2 < 0.3 and NRMSE > 0.25). The comparison results between ET0 from empirical methods and ET0 obtained from FAO-Penman–Monteith indicated that the FAO/56 method had the best performance (R2 = 0.72 and NRMSE = 0.3). To increase the accuracy of empirical pan coefficient equations, these equations were modified with eight years (2007-2015) of meteorological data from the Fasa synoptic station and validated using two years of independent data (2015-2017). The results showed that the accuracy of all empirical models was improved and the Cuenca equation with NRMSE = 0.16 and R2= 0.63 was selected as the best equation for pan coefficient estimation and ET0 (R2 =0.85; NRMSE =0.18) in Fasa region. The sensitivity analysis revealed that the estimated pan coefficient is more sensitive to wind speed, followed by relative humidity, fetch distance, the slope of the saturation vapor pressure curve, sunshine hours, and air pressure. According to statistical results and sensitivity analysis, an equation was expanded for the Fasa region and other areas with the same climate.

M. Paritaghinezhad, H.r. Kamali, S. Jamshidi, M. Abdolahipour,
Volume 27, Issue 2 (9-2023)
Abstract

According to the effects of climate change on evapotranspiration and using of water resources, climate change prediction is vital due to water resources management improvement and decreasing damages of drought. The first rank of mango production in Iran belonged to Hormozgan province and the most amount of mango produced in Minab plain. In the present study, the amount of evapotranspiration of mango plants was calculated with FAO Penman-Monteith from 1985 to 2020 using meteorological data at Minab station. The evapotranspiration values of the plant were estimated from 2021 to 2100 with two optimistic and pessimistic scenarios using the last version of CMIP (CMIP6), atmospheric-ocean general circulation models, and performing statistical deviation corrections by the Python software. The results showed that the values of annual evapotranspiration will increase by 0.31 and 1.23 mm on average in the optimistic and pessimistic scenario, respectively in the future due to the increase in annual temperature.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb