Search published articles


Showing 7 results for Factor Analysis.

R. Honarnejad, M. Shoai-Deylami,
Volume 8, Issue 2 (7-2004)
Abstract

The results of diallel analysis of 7 parents and 21 F2 progenies of Burley tobacco cultivars, which were transplanted in 2002 as RCBD with 3 replications in the Tobacco Research Center, Rasht, Iran, showed significant genetic differences among genotypes and high GCA and SCA for most of the traits. Therefore the role of additive and non-additive (dominant) effects of genes on the formation of the corresponding characteristics was important. The graphical analysis of progenies of diallel crosses showed partial dominant effect for nicotine percentage in leaves. The distribution of parents around regression line showed most dominant genes in cultivars B.CDL 28, B.Banket, and B.21 while cultivars B.14 and B.TN 86 hade most recessive genes for this characteristic. Also the low and high percentages of nicotine were controlled by dominant and recessive genes, respectively. Estimated simple (phenotypic) relationships between characteristics showed significant correlation between dry leaf yield of tobacco cultivars and its components such as leaf area index (LAI) (r = 0.482**), time to flowering (r = 0.440*), appearance of leaves (r = 0.648**) and percent age of dry matter of leaves. The path coefficient analysis showed very high direct influence of dry matter percent age of leaves, appearance of leaves, and LAI in dry leaf yield. These characteristics would be a favorite selection index for increasing tobacco yield, since characteristics such as leaves per plant, plant height and time to flowering have no significant direct influence on dry leaf yield of tobacco cultivars. These yield components explain 82% of variance of tobacco yield. Results of factor analysis, using principal Component Analysis (PCA) with Varimax rotation showed that characteristics such as leaves per plant, LAI, and plant height with high positive and significant factor loading as a morphological factor explain 44% of data variance. The second factor including such traits as time to flowering, appearance, and percent of dry matter of leaves with high positive and significant factor loading, form a physiological factor. These two factors together explains 65% of variance of dry leaf yield of tobacco cultivars.
A. Sarkhosh, Z. Zamani, M. R. Fatahi Moghaddam, A. Ebadi, A. Saie, S. Z. Tabatabaie, M. R. Akrami,
Volume 10, Issue 4 (1-2007)
Abstract

In order to determine the most important quantitative and qualitative characteristics of pomegranate fruit and its components for categorizing the genotypes, a study was carried out using 24 genotypes. In this study 28 quantitative and qualitative characteristics of pomegranate fruit and seed were evaluated. Analysis of variance showed that all of the characteristics in examined genotypes were significant, showing high variability in characteristics. Results of simple correlation analysis showed the existence of significant, positive and negative correlations among some important characteristics. Also, factor analysis showed that most of fruit juice, aril and seed characteristics constituted the main factors. Effective characteristics categorized in seven factors accounted for 89% of total variance. For each factor, eigen value more than 0.7 was considered significant. Cluster analysis was performed using these seven factors and genotypes, in the distance of 9, were divided into 5 main clusters. These groups were mainly distinct in fruit flavor and soft seededness. Furthermore, by using three main factors, genotypes positions determined in 3-plot analysis, which distinguished sweeter genotypes from sweet-sour and sour genotypes.
M .tousi Mojarrad, M. R. Ghannadha,
Volume 10, Issue 4 (1-2007)
Abstract

In order to evaluate grain yield potential and study dry matter remobilization to seed, 8 commercial bread wheat cultivars were examined in two separate experiments, using randomized complete block design with 4 replications in 2003. There were significant differences for most traits in normal and drought conditions. Sarday variety had the least grain yield in the two environments. There was considerable variation between genotypes for independent parameters of dry matter remobilization to different plant parts in the two environments. Factor analysis showed that seven factors accounted for 100 % of the data total variance in normal and drought conditions. Factor analysis also showed that the effective traits to components grain yield , height and phenological traits were important for the selection of appropriate genotypes. Calculation of drought resistance indices showed that four indices including mean productivity, geometric mean productivity, harmonic index, stress tolerance index were more effective than other indices for the selection of drought tolerant genotypes.
V. Narjesi, H. Zeinal Khaneghah, A. Zali,
Volume 11, Issue 41 (10-2007)
Abstract

Thirty soybean cultivars from different maturity groups were evaluated in a randomized complete block design with four replications in Research Station of College of Agriculture at Tehran University in Karaj in 2004. The purpose was to determine genetic relationship of some important agronomic traits related to seed yield. Analysis of variance showed that there were significant differences among varieties for the traits under study, indicating the existence of genetic variation among varieties. Number of pods/plant, number of seeds/plant and 100-seed weight, all of which are considered yield components, had the highest genotypic correlation with seed yield. Using stepwise regression analysis, 85.6 % of seed yield variation was attributed to four traits, including harvest index, biological yield, protein precent and number of seeds /plant. Harvest index was more important for predicting seed yield compared to other traits based on standardized ßs. Results of path analysis showed that the harvest index and protein precentage had the highest and lowest direct and positive effect (p=0.536), (p=0.008), respectively. Therefore, harvest index may be considered as a selection criteria to improve seed yield in breeding programs. Results of factor analysis showed five independent factors accounted for 80.2 % of total variations in data. The first principle determined 28.2 % of total variation and was designated as phenologic factor.
M. Sabokdast , F. Khyalparast,
Volume 11, Issue 42 (1-2008)
Abstract

  This research was conducted in order to determine the relationship between grain yield and yield components, using 30 common bean varieties in a randomized complete block design with four replications at the Agricultural filed faculty of Agriculture,Tehran university In this study 18 traits were assessed on 10 random plants from each plot. The result showed that there were significant differences among varieties in terms of trait under study, indicating the existence of genetic variation among varieties. Also results showed that the grain yield had a positive and significant genotypic correlation with number of seed/pod, pod weight, number of pod/plant, biological yield, days to flowering and maturity. Stepwise regression analysis showed that the maximum variation in grain yield could be attributed to the number pod/plant, number seed/plant, 100 seed weight and pod length. The results of path analysis showed that the highest direct effect, being positive, was related to number seed/plant and the lowest direct effect, which was related to number pod/plant. Factor analysis resulted in three factors that accounted for 78/7% of total variation. The first factor accounted for 38.39% of total variation and was designated as yield and yield component factor. This factor is comprised of pod weight, biological yield, grain yield and number of pod/plant traits.


M. Iravani, M. Solouki, A.m. Rezai, B.a. Siasar, S.a. Kohkan,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the diversity and relationship between agronomical traits with seed yield components in barley, twenty advanced barley lines were evaluated in a randomized complete block design with 3 replications at Research Center of Agriculture in Sistan in 2006. Each plot consisted of six rows spaced 20 cm apart and 5 meters long. In this research, 24 Agronomic traits were measured on five randomly selected plants in the central rows of each plot. Analysis of variance showed that there were significant differences among the lines for most of the traits. Line No.7 had the highest (406 grs/m2) and line No.5 had the lowest (309 grs/m2) seed yield. There were high correlation between seed yield and number of panicle/m2. Factor analysis results indicated that 7 independent factors explained 82 percent of the total variation. The first two factors, namely yield components and tillering capacity, explained 41 percent of the total variation. Therefore, it can be concluded that the traits are related to seed yield and tillering capacity, i.e., number of seed per main panicle. 1000 seed weight, number of seed per plant, number of days to physiological maturity and days to heading are the most important characteristics in selecting lines with high seed yield. Number of fertile tiller, total number of tillers and peduncle length were also next set of important traits. Number of days to emergence, nodule number and number of panicle per m2 were also important as selection criteria. Seed weight per plant, biological yield, awn length and the traits that were related to flag leaf had lower importance for selection of lines with high seed yield.
S Safae Chaykar, H Samie Zade, M Esfahani, B Rabiei,
Volume 13, Issue 48 (7-2009)
Abstract

In order to study the correlation of agronomic, morphologic and physiologic traits and their effects on grain yield of rice genotypes in two environments (favorable irrigation and water stress), 49 genotypes were evaluated using a completely randomized block design with 3 replications in two experimental conditions. All practices and conditions were the same for the two experiments with the exception of irrigation, where under stress conditions no irrigation was applied at tillering stage. Comparison of means showed significant differences between genotypes in each environment. Also, differences between yield and yield components of each genotype under two conditions were significant. The results of phenotypic correlations showed that the highest positive and significant correlation with grain yield belonged to number of panicle per plant (0.95) in irrigation conditions and to number of filled grains per panicle (0.92) in water stress conditions. Stepwise regression analysis for grain yield introduced number of panicle per plant, relative water content (RWC), flag leaf length and number of spikelet per panicle, respectively, as effective traits in grain yield in irrigation conditions, however, in stress conditions, number of filled grain per panicle, number of panicle per plant and relative water content were effective traits in yield. The results of path analysis showed that the number of panicle per plant had the highest positive and direct effect on grain yield in the two environments. Factor analysis introduced four factors in the two conditions named yield and crop production, phenologic, harvest index and plant shape and appearance quality of grains factors. Therefore, to select high yield and drought tolerant genotypes, we need to consider number of filled grain per panicle, number of panicle per plant and relative water content. In addition, traits such as panicle length, number of spikelet per panicle, flag leaf length and width that showed significant correlations with grain yield in stress conditions should also be considered important and second to the above mentioned traits.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb