Search published articles


Showing 5 results for Fertilization

O. Farhadian, M. R. Ahmadi,
Volume 7, Issue 3 (10-2003)
Abstract

Oval fertilization and survival rates at incubation stage form the most important issues of concern in rainbow trout hatcheries in Iran. Hatchery managers tend to use the best method in fertilizing the ova in order to obtain the highest survival rates. A survey of common fertilization methods may help to determine the best one. In this study, the ova from two groups of 3-5 year-old and younger than 3 years broodstocks were fertilized employing dry and semi-dry methods in normal water and dry and semi-dry methods in fertilization solution. The experiment was carried out in a completely randomized design as a 422 factorial arrangement and with two replicates. The analysis of final results indicates that the highest survival rates of eggs and larvae were obtained in semi-dry fertilization. These rates significantly increased when fertilization solution was used (P<0.05). Moreover, the survival rates of eggs and larvae of 3-5 year-old broodstocks were higher than those of younger than 3 years. On the other hand, type and methods of fertilization showed no significant differences with degree-day (sum of heat) at developmental stage but the age of broodstocks made significant differences with degree-day from fertilization to the first hatching stage (P<0.05).
M. Khodagholi, Z. Eskandari, M. Saeidfar, S. Chavoshi,
Volume 12, Issue 44 (7-2008)
Abstract

The effect of nitrogen and phosphorous fertilization on range species production was studied using factor combination method as factorial with 3 blocks and 12 treatments. Nitrogen in 4 levels of 0،25،50 and 75 kg N/ha and phosphorus in 3 rates of 0،30 and 60 kg N/ha were used. Results indicated no significant difference between nitrogen rates in different growth forms of grass, bush and Eurotia ceratoides. Nitrogen in 75 kg/ha rates caused an increase of 40 and 106% in grass and Eurotia production, respectively. The maximum rate of production was seen in N50 with 100 percent increase compared to N0. Moreover, no significant difference in phosphor rates of leguminous and grass was observed. P 60 kg caused 500 and 56 % increase in leguminous and grass production, respectively.
M Navabian , A Liaghat ,
Volume 14, Issue 51 (4-2010)
Abstract

Environment pollution is an important problem in the world. In agriculture irrigation, drainage and fertilization activities cause water resource and environmental pollution by effecting on solute, nutrient and sediment transport. Combined methods of water and nutrient management could consider in pollution transport controlling that reducing runoff and deep percolation, providing opportunity for solute infiltration, reducing sediment transport even economic and easy usage. In this research, affect of two different management in irrigation (cutback and continues) and fertilization (solid and fertigation) on nutrient loss was evaluated. Comparing nitrate, phosphor and potassium loss in different management explicate cutback flow with no uniform solid distribution of fertilizer is more useful to prevent nutrient loss. Because of similar results, increasing in fertilizer distribution in furrow length and easy usage between nitrate losses in six managements, show cutback flow with three proceeding solid, fertigation and fertigation (with 1/4, 1/2 and 1/4 ratio) fertilization was recommended replacement of cutback flow with three proceeding solid fertilization.
H. Shekofteh,
Volume 18, Issue 69 (12-2014)
Abstract

In order to study the effect of depth of drip placement in soil in subsurface drip irrigation, and fertilization time during irrigation events, on tuber yield of potato, an experiment was carried out in Jiroft area in 1389. This experiment was in a completely randomized block design with four replications, with depth placement of drip tape as the main plot, and fertilization time as the sub-plot. Results showed that depth placement of drip tape had a significant effect on tuber yield, plant height, number of stems, stem diameter and dry plant weight at 1% level, number of tubers in plant, and wet plant weight and stolen height at 5% level. Fertilization time had a significant effect on tuber yield, stem diameter, stem number in plant, and plant height at 1% level and on dry plant weight and plant tuber number at 5% level. But, it did not show any significant effect on other attributes. Also, interactional effects of treatments were significant on tuber yield per plant, stem diameter, plant height, and number of tubers at 1% level, and on dry plant weight at 5% level, but the effect on other traits was not significant. According to the statistical results, the highest yield was obtained from the depth of 15 cm and middle time of fertilization.


M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (8-2016)
Abstract

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb