Search published articles


Showing 4 results for Festuca

M. Parsaeian, A. F. Mirlohi, A. M. Rezaie, M. Khayyam Nekoie,
Volume 10, Issue 4 (1-2007)
Abstract

To determine the role of endophytes in conferring valuable physiological characteristics on and induction inducing cold tolerance in two species of festuca, an experiment was done at Isfahan University of Technology in 2002. Endophyte-infected and non-infected clones from two genotypes of tall fescue and one meadow fescue were prepared and coded 75,83 and 60 respectively. The clones were exposed to cold treatments at 6, -2 and –10C and compared with control treatment at 20C. After three weeks of cold treatments, relative water content of leaf and crown, cell membrane stability (electrolyte leakage), percentage of membrane damage and finally proline content of leaf were measured. The presence of endophyt caused an slight increase in relative water content of leaf and crown. There was considerably higher proline in endophyte-infected plants compared with non-infected ones in both stress and non-stress conditions. Endophytic fungi had strong effects on maintenance of membrane stability and on the decrease of electrolyte leakage at all temperature levels. Among plant genotypes, 83 preformed better for some characteristics, specially in the presence of endophyte, and showed higher cold tolerance.
M. M. Majidi, A.f. Mirlohi, M.r. Sabzalian,
Volume 11, Issue 41 (10-2007)
Abstract

Fescues (Festuca spp) are widely distributed in the temperate regions and are used for turf, forage and soil conservation. Though seed traits are important measures of the effects of endophytic fungi on their host, little information is available in this respect for Festuca. In this study, endophyte-infected (E+) and endophyte-free (E-) clones of the six fescue genotypes were used to investigate the effects of endophyte on seed production. The relationships between seed traits plus direct and indirect effects of components on seed yield were also studied. Endophyte infection resulted in 38.1% to 249% more seed yields in some genotypes, though some were not affected by this symbiotic relationship. Correlations between traits and also results of stepwise regression were influenced by the presence of the symbiotic fungi. Path analysis showed that endophytic fungi changed direct and indirect effects of components on seed yield. In endophyte containing clones, panicle fertility had the most direct effects and number of panicle per plant and seed per panicle the most indirect effects on seed yield. In E- clones, panicle fertility had the highest indirect effects and other components had direct effects on seed yield. The results suggested that breeding strategies for increasing seed yield in fescue should consider the presence or absence of endophyte in germplasm.
M. Ebrahimi, M. Jafari, E. Rouhimoghaddam,
Volume 19, Issue 72 (8-2015)
Abstract

The present study was conducted to increase phytoextraction efficiency of Festuca ovina L. in lead contaminated soil in the EDTA-assisted (0, 1.5, 3, 1.5+1.5, 3+3, 6 mmol kg&minus;1), assess the best time of plant harvesting to increase Pb uptake and method of EDTA application to reduce Pb leaching risk. The results revealed that the greatest Pb uptake was observed in 3EDTA treatment. Therefore, 3mmolkg-1 was used in the second step for assessing harvest time for 15, 30 and 45 days. Results showed that the concentration of Pb in plant tissues was increased with the passage of time and the best harvest time to achieve maximum removal of Pb was 60 days of the first harvest. In the third step to reduce leaching of Pb-chelate, 3mmolkg-1 EDTA in five ways of single, double, triple, quadruplet, quintuplet were added to the soil. The results indicated that under quintuplet application, Pb content reached its minimum concentration in the soil and in the plant organs, the Pb concentration was maximum and metal concentration in the plant organs did not vary significantly when triple, quadruplet and quintuplet dosages were added (p<5%). Overall, optimum phytoextraction of F. ovina L. and Pb leaching reduction were achieved when 3mmol kg&minus;1 EDTA was added in quintuplet dosage and the plant was harvested at the end of growth stage.


S. Abdi Ardestani, B. Khalili, M. M. Majidi,
Volume 25, Issue 1 (5-2021)
Abstract

Long-term drought effect is one of the main factors of global climate change, with  consequences for soil biogeochemical cycling of carbon and nitrogen and the  function of soil ecosystem under drought conditions. We hypothesized that 1) the Bromus inermis, Dactylis glomerata and festuca arundinacea species would differ in their rhizosphere responses to drought and 2) combined plant species and drought would have offsetting effects on the  soil biological traits. We tested these hypotheses at the long-term drought field expreiment at the  Lavark Farm of Isfahan University of Technology by analyzing soil microbial biomass carbon and nitrogen and activity of β-glucosaminidase in the rhizosphere of Bromus inermis, Dactylis glomerata and festuca arundinacea species. Soil microbial biomass carbon and nitrogen responses to drought depended on plant species,  such that the highest MBC was recorded in the Bromus inermis rhizosphere, while the  lowest was in the Dactylis glomerata rhizosphere, thereby suggesting the greater microbial sensitivity to drought in the Dactylis glomerata rhizosphere. Genotype variations (drought tolerate and sensitive) mostly affected the change in the β-glucosaminidase activity, but they were not significantly affected by drought treatment and plant species. In general, the positive effects of  the plant genotype could offset the negative consequences of drought for soil microbial biomass and traits.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb