Showing 2 results for Flag Leaf
A. Bahrani, Z.tahmasebi Sarvestani,
Volume 11, Issue 40 (7-2007)
Abstract
Understanding the nitrogen remobilization by plant, in order to obtain cultivars with higher quality, has specific importance in plant physiology. In this experiment, a bread and a durum wheat cultivar, were treated with different rates and times of nitrogen application, by using split factorial on the basis of randomized complete block design with three replications at Shiraz region during 2001-2002. Main plots consisted of two levels of cultivars ( Falat and Yavaros) and sub plots included nitrogen (40, 80 and 160 (kg ha-1) and times of nitrogen application (T1= all N fertilizer at planting , T2= 1/2 at planting + 1/2 during stem elongation and T3= 1/3 at planting + 1/3 during stem elongation + 1/3 at heading stage). The results showed that there was a significant difference between cultivars in flag leaf nitrogen content at maturity stage, N remobilization and its efficiency from flag leaf to grains and also grain protein percentage. Durum wheat was more efficient in nitrogen remobilization and therefore, had a higher grain protein percentage. Increase in rates and times of nitrogen application had significant effect on most of the measured traits. There were significant interactions between cultivars, rates and times of N application, indicating that durum wheat was more efficient in N remobilization from flag leaf to the grain. It appeared that N remobilization efficiency was the important factor affecting the grain protein percentage. Also increases in yield are associated with corresponding decreases in wheat protein.
M. Zahedifar , N. Karimian , A. Ronaghi , J. Yasrebi , Y. Emam ,
Volume 14, Issue 54 (1-2011)
Abstract
The effect of phosphorus (P) (0, 25, and 50 mg kg-1 soil as Ca(H2PO4)2) and organic matter (OM) (0, and 2% w/w feedlot cattle manure) on P and zinc (Zn) distribution in different parts of wheat plant (Triticum aestivum L.) at various growth stages and its relationship with soil P and Zn were determined in greenhouse condition. In all pots, shoot P concentration decreased as plant growth proceeded. Phosphorus concentration of shoot and flag leaf decreased from 7th to 9th stage of growth, whereas that of spickle increased. Spickle P uptake and Zn uptake of stem, shoot, flag leaf, and spickle increased with proceeding of wheat growth. Phosphorus uptake of shoot increased from 3th to 9th growth stages, whereas P uptake of stem and flag leaf decreased from 7th to 9th growth stages. Soil P and Zn concentrations increased with application of P and OM and plant growth. The trend of P and Zn changes in shoot, stem and flag leaf was similar. It is, therefore, concluded that analyzing flag leaf for P and Zn concentrations be used for prediction of plant nutritional status of those nutrient elements in cases where such information is needed.