Search published articles


Showing 3 results for Flooding

M. Norouzi, H. Ramezanpour,
Volume 16, Issue 61 (10-2012)
Abstract

Flooding and fire are important phevent which could impact the forests of north of Iran periodically. These phenomena could have undesirable effects on properties and quality of soil. This study was conducted in order to investigative the effects of flooding and fire on some soil properties in Lakan forest, Guilan province. Soil sampling was carried out on three replicates from three depths 0-3, 3-6 and 6-9 cm in flooding, burned and intact regions. Results of this study indicated that clay, silt, pH, electrical conductivity (EC), Na and K values (in all of depths), organic carbon (OC) and N values (in second and third depths) significantly increased and sand content (in all depths) significantly decreased in flooding soils in comparison with intact soils. In burned soils, pH values (in first and second depths), EC, K and P values (in first depth) significantly increased and clay, OC and N values (in first depth) significantly decreased in comparison with intact soils. Soil water retention capacity showed that the flooding and burned soils had maximum and minimum levels soil moisture that can be related to clay and OC changes. Results of WDPT test showed the water repellency in the first depth in burned soils. Generally, flooding and fire phenomena significantly affected physical and chemical properties.
K. Shirani, S. Chavoshi,
Volume 22, Issue 4 (3-2019)
Abstract

Catchment prioritization in terms of natural disaster intensity as well as prevention and control practices plays a main role in the natural resources and watershed management. In this study, a total of 24 sub-catchments in the Zohreh-Jarrahi basin were prioritized according to their morphometric parameters and using the mixed model of TOPSIS-Multivariate regression. A total of 12 morphometric parameters including constant component of channel maintenance, drainage density, ruggedness number, infiltration index, stream power index, stream frequency, slope, drainage texture rate, relief rate, form factor, bifurcation ratio and topography wetness index, in addition to rainfall, were studied and scored. Parameters were weighted by using multivariate regression and the spatial distribution of the observed flood events. TOPSIS model was used for the prioritization process. The results obtained from the weighting analysis showed that the ruggedness number, slope and rainfall had the highest effect on flooding in the study area with the score of 0.068, 0.024, and 0.016, respectively. According to the prioritization results, sub-catchments of Seidoon, Emamzadeh Jafar, and Takht Deraz, which had the minimum distance to the positive optimum (0.0028, 0.0029, and 0.0029, respectively) and the maximum distance to the negative optimum (0.0097, 0.0098 and 0.0095, respectively), showed the highest flooding intensity with the score of 0.7745, 0.7690 and 0.7625, respectively. In order to validate the results, prioritization results were compared to the observed flood events. Validation results also indicated the efficiency of the mixed model in delineation of catchments prone to flooding. Three sub-catchments of Seidoon, Emamzadeh Jafar and Takht Deraz were observed to have the highest number of observed flood events, thereby showing the high effectiveness of the model and also, the role of the morphometric parameters in flooding.

A. Talebi, E. Abyari, S. Parvizi,
Volume 23, Issue 4 (12-2019)
Abstract

Flood is a natural disaster making the heavy humanistic and economic damages each year in most parts of Iran. In this research, the SWAT model performance in flood prediction and sub-basin priority was investigated in terms of flooding in Araz-Kose watershed in Golestan province. To calibrate the model, SUFI2 was applied. The calibration and validation were done for the 1991-1998 period based on the data of 2001-2009. After validation, the indices (R2, bR2, and NS) were estimated. They were equal to 0.81, 0.81 and 0.73 for calibration and 081, 0.78 and 0.64 for validation, respectively. The sensitivity analysis results showed 13 effective parameters. The curve number (CN2) was determined as the most effective parameter. For studying the flooding in a watershed, the Araz-Kose watershed was divided into six parts. Based on the obtained results from the SWAT model with different CN and F indexes (with/without considering the sub-watershed), the sixth sub-basin with 22.4% decrease in discharge was chosen as the most effective region in flooding. Meanwhile, the other sub-basins including 4, 1, 3, 5 and 2 had more flood potential, respectively.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb