Search published articles


Showing 11 results for Forage

Mohammad Reza Vahhabi, Mehdi Bassiri, Jamaleddin Khajeddin,
Volume 1, Issue 1 (4-1997)
Abstract

Short-term changes (5 years) in canopy cover, species composition and forage production were studied under protection from grazing and grazed condition in 19 range sites in Fereydan region, Isfahan province. In this study, density, canopy cover and forage production data were obtained from quadrates inside and outside exclosures in the spring of 1983. These parameters were studied again in 1988 and compared with the previous data. Results indicated that species diversity in these range sites was relatively high up to 212 plant species were identified. Sixteen, 8.5 and 75.5 percent of these species were classified into I, II and III palatability classes respectively. After five years, comparison of inside and outside exclosures indicated an increase in the density of species of I, II and III palatability classes by 138.8, 120.8 and 51.5 percent inside exclosures, respectively. Density of all species had increased by 62 percent as a result of 5-year protection from grazing. Species composition data as canopy cover were used to construct 3 dendrograms to investigate the similarity among range Sites. Assuming 32% similarity as the threshold level, 19 range sites were classified into 10 vegetation types in 1983. After 5 years, these vegetation types decreased to 8 and increased to 11 under protection from grazing and grazed conditions, respectively. The average forage production inside exclosures was almost twice as much as in grazed sites (600 Vs. 315 kg/h). Three groups of range sites were recognized according to the time requirement for rehabilitation by grazing protection. The first group was improved considerably by the end of the 5-year protection Period. The second group improved relatively within five years of grazing exclusion. The third group did not improve by 5-year grazing protection and needed much longer protection period or some other range rehabilitation practices.
A. Mirlohi, N. Bozorgvar, M. Bassiri,
Volume 4, Issue 2 (7-2000)
Abstract

In order to determine the most suitable cultivar and N level based on yield and silage value of forage sorghum, an experiment was conducted in summer 1995. The experiment was arranged in a split-plot design with four replications. Two levels of N (300, 500 Kg/ha urea) were the main plots and the subplots were three sorghum hybrids (Sugar graze, Super dan and Speed feed). Seeds were hand sown on June 29 with an inter row space of 50 cm and a final density of 20 plant/m2.

The results showed that when the N rate increased, forage yields and percent of protein in forage and silage increased. Also panicle dry weight increased at anthesis. The N rate had no significant effect on other traits. A significant difference was observed among hybrids for all characteristics measured. Sugar graze with a bigger stem diameter was taller and produced higher number of leaves. At anthesis, plant leaf and stem dry weight was also highest for Sugar graze however, the highest panicle dry weight belonged to Speed feed. There was a significant interaction between hybrids and N levels for dry matter production. The percent of leaf, stem and panicle dry matter was highest in sugar graze, Super dan and Speed feed, respectively. The Sugar graze produced the highest forage and dry matter yield. This hybrid produced 30 ton/ha of dry matter and 97 ton/ha of forage, respectively.

 Furthermore, this cultivar had the highest percent of forage crude protein (7.45%) and the least percent of forage crude fiber (25.12%). Ensiling caused a decrease in percentage of crude protein and an increase in crude fiber. The Sugar graze and Speed feed had the highest and lowest dry matter digestibility, respectively. Based on the results obtained from this study, Sugar graze was found to be the most suitable hybrid due to its highest forage and dry matter yield and better silage quality. Higher N rate (500 kg/ha) is also recommended for higher forage yield and higher percentage of protein.


G. Fathi, M. Mojedam, S. A. Siadat, G. Noor Mohammadi,
Volume 5, Issue 4 (1-2002)
Abstract

Effects of different levels of nitrogen fertilizer and cutting time of forage on grain and forage yield of barley (Hordeum vulgare L.) Karoon cultivar was studied during 1995-1996 at Ramin Agricultural Research and Educational Center, University of Shahid Chamran, Ahwas, by using a split plot design in randomized complete block with 4 replications. Main plots were assigned to five levels of N fertilizer (45, 90, 135, 180 and 225 kg N/ha) as urea fertilizer and subplots to three cutting times (no cutting, cutting forage at early stem elongation without removing reproductive meristem and cutting forage in the middle of stem elongation with cut reproductive meristem).

The effects of N rates and cutting time on grain yield were significant. Maximum yield was obtained with 281.6 g/m2 when crop plants received 90 kg N/ha and cutting time at early stem elongation and minimum yield was obtained (158.2 g/m2) with 45 kg N/ha and cutting forage in the middle of stem elongation. Interactive effect of levels of N and cutting time on spike number per m2, grain number in spike and grain weight were significant. Among yield components, spike number and grain weight showed the highest sensitivity to both. Different levels of N increased forage protein concentration and protein yield significantly, but delay in cutting time decreased protein concentration and increased protein yield. Results indicated that high levels of N could not compensate for the delay in cutting time of forage for grain yield. It was concluded that application of 90 kg N/ha and cutting time in early stem elongation was preferable for grain and forage production as compared to other treatments.


A. Majnooni-Heris, Sh. Zand-Parsa, A. R. Sepaskhah, A. A. Kamgar-Haghighi,
Volume 10, Issue 3 (10-2006)
Abstract

Agricultural investigations use computer models for simulation of crop growth and field water management. By using these models, the effects of plant growth parameters on crop yields are simulated, hence, the experimental costs are reduced. In this paper, the model of MSM (Maize Simulation Model) was calibrated and validated for the prediction of maize forage production at Agricultural College, Shiraz University in 1382 and 1383 by using maize forage yield under furrow irrigation with four irrigation and three nitrogen treatments. Irrigation treatments were I4, I3, I2, and I1, with the depth of water 20% greater than, equal to, 20% and 40% less than potential crop water requirements, respectively. Nitrogen treatments were N3, N2, and N1, with the application of N as urea equal to 300, 150, and 0 kg N ha-1, respectively. After calibration and validation of MSM, it was used to estimate suitable planting dates, forage yield and net requirement of water discharge for planting at different dates. The results indicated that the net requirement of water discharge was reduced by gradual planting at different planting dates. By considering different planting dates for maize, from Ordibehest 20th to Tir 10th, the planting area might be increased 17.9%, compared with single planting date on Ordibehesht 30th under a given farm water discharge and full irrigation.
A. Siah-Marguee, M.h. Rashed-Mohasel, M. Nasiri-Mahallati, M. Banayan-Aval, A. A. Mohammad-Abadi,
Volume 11, Issue 41 (10-2007)
Abstract

This study was performed in two barley fields, in Experimental Station, Agricultural College of Ferdowsi University of Mashhad in 2003. Sampling was done by systematic method in which samples were taken from the corners of 7m*7m grids using 0.5m 0.5m size quadrates in three stages (pre herbicide, post herbicide and pre harvesting stages). The results indicted that the density of annual weed seedlings in sugar beet- barley rotation was more than fallow- barley rotation, and the density of perennial weed seedlings in fallow-barley rotation was more than sugar beet- barley rotation. Map of species distribution and density confirmed patchiness distribution of the weeds. The shape and size of patches differed based on the field and weed species, but spatial distribution did not change considerably before and after the application of herbicide. Percentage of free weeds area was 11.5% and 1.5% in fallow-barley rotation and 0.6% and 0% in sugar beet- barley rotation in the first and second sampling stages, respectively. These results indicate beside emphasis on weed infestation. The result also indicates inefficacy of sugarbeet-barley rotation compared to follow-barley rotation. Apparently, the evaluation of management and paying special attention to weed dispersal within the field assist in the implementation of appropriate management strategy, which includes high efficacy, and profit for farmers as well as least damage to crops.
S. M. Naser Alavi, M. Shamsaddin Saeid,
Volume 12, Issue 45 (10-2008)
Abstract

To study the effects of plant densities and planting orientation on the seed and forage yield of sorghum, an experiment was conducted at Hossein- Abad – Shahcal village –90 kilometers south of Bam-in 2002. The experiment was a factorial with randomized complete block deisgn and three replications. The treatments were: orientation with three levels (South-North, East – West, Northeast – Southwest) and plant densities with four levels (50000, 70000, 90000, 110000 plants per hectare). Results of analysis of variance showed that planting orientation had significant effects on seed yield, weight of 1000 seeds, number of tillers, dry matter yield, length and diameter of shoot. Mean comparisons, showed that the maximum and minimum amount of the above mentioned traits except for shoot length was obtained under the North-South and East-West orientations, respectively. Significant differences were also found among densities in terms of all the mentioned traits. Results showed that increasing density decreased seed yield, weight of 1000 seeds, number of tillers and shoot diameter. The highest and lowest values (except of seed yield) were recorded for 50000 and 110000 plants/per hectare, respectively. Dry matter yield and the shoot length increased with increasing density. Based on the results of this experiment, the best plant densities to obtain the highest forage and seed yield are 70000 and 110000 plant per hectare, respectively and the best planting orientation is North-South.
M. Gholamhoseini, M. Aghaalikhani, M.j. Malakouti,
Volume 12, Issue 45 (10-2008)
Abstract

In order to study the effect of various amounts of nitrogen (N) and Iranian natural zeolite on the quantitative and qualitative forage yield of winter canola (Brassica napus L.) in light soil, a field experiment was conducted on research farm of Tarbiat Modares University, Tehran, during 2006-2007. Treatments were arranged in the form of RCBD with 3 replications. The experimental treatments were based on factorial various levels of zeolite (0, 3, 6 and 9 t.ha-1) and nitrogen (90, 180 and 270 kg ha-1) in urea form. Seeds of canola (Brassica napus L. cv. Okapi) were sown on October 2, and fresh forage was harvested at the time of silique formation (170 DAP). Results showed that the effect of N and zeolite on forage quantitative attributes including biomass, leaf and stem dry weight and leaf area index were statistically significant. In addition, forage qualitative traits including crude protein percentage and calcium percentage in plant mass were significantly affected by N and zeolite. Increasing application of N fertilizer caused increase in N leaching, and with increasing zeolite application, N leaching reduced. The interaction of two factors for all parameters was not significant. The most increasing effects on forage yield and quality were gained using 270 kg N ha-1 in combination with 9 t. Zeolite ha-1. More detailed studies are strongly recommended to investigate the effects of integrated application of chemical fertilizer and natural zeolite.
M.m Majidi, A Arzani,
Volume 13, Issue 47 (4-2009)
Abstract

Sainfoin (Onobrychis viciifolia Scop.) is a perennial legume widely adapted to environmental conditions and has been successfully used as a pasture and hay forage in Iran. This experiment was carried out to investigate yield potential and genetic variation of morphological, agronomic and qualitative traits using 10 Iranian sainfoin populations. The experiment was conducted as a randomized complete block design with four replications ON Research Farm, Isfahan University of Technology. Results indicated that there are significance differences between populations for most of the traits. The estimates of heritabilities for forage yield, number of stem per plant, number of node and qualitative traits were over 50 percent. The high phenotypic and genotypic coefficients of variability for economic traits showed that a broad genetic diversity in this germplasem can be exploited in breeding programs. Significant differences were found among cuts and cut × population interaction for all characters. The third harvest produced 41.6 percent of total hay yield. Evaluation of traits related to forage quality revealed that the highest proportion of leaf to stem belong to Sarab and Oromieh populations (6.28 and 6.82, respectively). Crude protein percentage was significantly different among cultivars and Golpayegan population had the highest value for Crude protein percentage. Feridan, Khonsar and Golpayegan populations produced the highest dry matter yield in the first, second and third cut, respectively. These populations were found as the high potential accessions, which can be used as a source for agronomic and plant breeding research in the region.
B Siahsar, A Taleei, A Peyghambari, M Naghavi, A Rezaee, Sh Kohkan,
Volume 13, Issue 47 (4-2009)
Abstract

In order to map the genomic regions affecting barley forage quantity and quality, two experiments were conducted with 72 doubled haploid lines and their two parents (‘Steptoe’ and ‘Morex’), at the Research Farms of the Faculty of Crop and Animal Sciences, University College of Agriculture and Natural Resources, University of Tehran and Agriculture and Natural Resources Research Station of Sistan, in 2007. The experiments were arranged in a randomized complete block design with two replications. Each plot consisted of six rows that were 3m in length and spaced 25cm apart. QTL analysis was conducted by Composite interval mapping (CIM) method separately for each trait in each location. The main effect of genotype was high significant for all the studied traits. Transgressive segregation in both directions (positive and negative) was observed for all the studied traits. There was a negative relationship between forage qualityrelated with quantity-related traits. Thirty-three QTLs controlling different studied traits were identified. Phenotypic variance explained by these QTLs varies from 7.07 to 39.04%. Highest LOD scores were obtained for the leaf to stem ratio on chromosome 2H. QTLs of forage quality (total digestible nutrient, dry organic matter digestibility, leaf to stem ratio, seed to forage ratio and number of tiller per plant) and quantity (plant height, forage wet and dry matter) indexes were found on chromosomes 1H, 2H, 3H, 4H, 5H, 6H and 7H. Most of mapped QTLs appear to be fairly stable between locations and can become candidates for marker-assisted selection.
H Fazaeli, M Nosrat Abadi, K Karkodi, A Mirhadi,
Volume 13, Issue 48 (7-2009)
Abstract

This research was conducted to study the nutritive value of Jerusalem artichoke (JA) as animal feed. The aerial part of the JA plant was harvested, at full bloom stage, and then chopped and dried. The chopped JA hay included 0.0, 10, 20, 30 and 40 % of alfalfa hay, used as experimental diets, and tested for in vitro digestibility. In a changeover experiment with Latin square based design the in vivo digestibility was studied by sheep. The samples of dried JA forage as well as the experimental diets were collected and analyzed chemically. The nutrient contents of JA were relatively similar to alfalfa hay except for the crude protein that was lower in JA. The in vitro dry mater and organic mater digestibility were not affected by the levels of JA in the diets, but the digestible value reduced (p<0.05) when the JA ratio was increased to the 40% of the diet. The in vivo digestibility of dry mater, organic mater and fiber fractions was decreased in the diet containing 40 percent JA however, total digestible nutrients and metabolisable energy were not significantly different among the treatments. It may be concluded that nutritive value of JA is similar to alfalfa hay, when it is used up to 30% instead of the alfalfa hay based diet
R. Amirnia, J. Jalilian, E. Gholinezhad, S. Abaszadeh,
Volume 21, Issue 4 (2-2018)
Abstract

To evaluate the effect of supplemental irrigation and seed priming on yield and some quantity and quality characteristics of vetch (Vicia dasycarpa) rainfed maragheh cultivar, an experiment was carried out at the Research Farm of Faculty of Agriculture, University of Urmia, West Azarbaijan province, Iran, during 2011. The experiment was laid out using split-plot, based on Randomized Complete Block design in three replicates. The factors studied were: Supplemental irrigation at four levels: without supplemental irrigation (I1), 1 time of supplemental irrigation (I2), 2 times of supplemental irrigation (I3) and 3 times of supplemental irrigation (I3). The subplot included four levels of seed priming: Control (C), Water (W), Phosphate (P) and Nitroxin (N). Plant height, pod number in stems, 1000-grain weight, wet and dry forage yield in the second and third harvest and fiber percentage in the second and third harvest, protein yield in the second and third harvest, biological yield and harvest index were influenced by the supplemental irrigation. Wet and dry forage yield in the second harvest and wet forage yield in the third harvest were highest in I4 with respectively 14.5, 16.72 and 3.56 (tons/hectare) yield and lowest with respectively 7.73, 7.47 and 2.06 (tons/hectare) yield. As a result, applying 2 times of supplemental irrigation and seed treatment with phosphate and nitroxin had positive effects on quality and quantity yield of vetch and they could improve the quantity and quality of Vetch forage.
 



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb