Search published articles


Showing 6 results for Freundlich

M. Maftoun, H. Haghighat Nia, N. Karimian,
Volume 4, Issue 2 (7-2000)
Abstract

As apparent Zn recovery in mineral soils (saturated and unsaturated) is nill, the precise assessment of processes responsible for Zn retention in these soils is of great importance. A laboratory study was conducted to characterize Zn adsorption in eight lowland calcareous soils. The fit of sorption data was evaluated by Freundlich and Langmuir isotherms. In this study, 2-g soil samples were equilibrated for 24 hours with 40 mL 0.0lM CaCl2 solution containing 5 to 500 mg Zn L-1. The amount of Zn adsorbed was calculated based on the difference between the initial and equilibrium Zn concentrations.

Zinc adsorption data were fitted to a linear form of Freundlich equation. However the Langmuir isotherm was divided into two distinct linear portions, representing two different types of adsorption sites. The Langmuir K1 was higher and adsorption maxima (b1) was lower in part I (corresponding to lower Zn concentration) than in part II (corresponding to higher Zn concentration). Thus, it seems that in parts I and II, sites are more important for their high adsorption energy and adsorption capacity, respectively. Langmuir adsorption maxima (b2) was positively correlated with clay content, CCE and P concentration and negatively correlated with CEC.


A. Samadi, E. Sepehr,
Volume 17, Issue 65 (12-2013)
Abstract

In order to determine optimum equilibrium solution phosphorus (P) concentration using P adsorption isotherm and obtain model(s) by integrating soil solution P concentration, physicochemical properties, and soil P test (available P) which predict standard P requirements to achieve maximum yield, laboratory and glasshouse experiments were conducted on 36 soil samples belonging to 15 soil series and 14 soil samples, respectively. Using wheat as a test crop, the glasshouse experiment was laid out with five P levels in a completely randomized design with three replications. Concentrations of P in solution established by adding P in the pots estimated from the sorption curve ranged from 0.2 to 1.2 mg P/L including check treatment (no P). The results showed that equilibrium solution P concentration (EPC) was almost low in comparison with the requirement for most crops (<0.2 mg/L). The amount of P adsorbed by the soils at 0.2 mg/L EPC ranged from 5 to 114 mg/kg soil. The phosphate adsorption was well described by Freundlich (R2 = 0.96) and Langmuir (R2 = 0.88) isotherms. Langmuir maximum adsorption (Xm) and Freundlich coefficient (aF) estimated from Langmuir and Freundlich equations ranged from 127 to 238 mg P /kg soil and from 43 to 211 mg P/kg, respectively. Yield of wheat in all soils approached maximum as adjusted P levels were increased to 0.4 mg P/L. The results showed that some soils studied were adequate in available P by the NaHCO3 test, but required an amount of P fertilizer by the isotherm P requirement test to obtain maximum biomass production. Soil clay content was significantly related to the soil P sorption indices, P0.4 (P sorbed at 0.4 mg P/L EPC) (R = 0.40, P<0.01), PBC (P buffering capacity) (R = 0.54, P<0.001), aF (R = 0.48, P<0.01), and Xm (R = 0.40, P<0.01). Total CaCO3 and Active CaCO3 were found to be less important factors affecting P adsorption. Using stepwise regression analysis resulted in a useful regression model including the combination of Olsen P and clay content for the prediction of standard P requirement (P0.4).
A. Mohammadi, M. Chorom, N.hosseini Zare, H. Amerikhah, A. Ramazan Poor,
Volume 17, Issue 65 (12-2013)
Abstract

The purpose of this study was to investigate cadmium adsorption through Freundlich and Langmuir equations in sediments of Karun River in three hydrometric stations (5th Ahvaz Bridge, Darkhovin and Khorramshahr) in the low-water and high-water seasons. Fitting of data from experiments on cadmium absorption to Freundlich and Langmuir equation showed they are compatible. According to the conducted experiments, there was a significant difference at 0.01 levels between b coefficient of Langmuir equation with the organic matter percentage and the clay content in both Low and high water seasons, while there was no significant difference between k coefficient of Langmuir equation with the organic matter percentage and the clay content for the two seasons. The results also suggested that there is a significant relationship between Kf of Freundlich equation with the organic matter percentage and clay content, at significant levels of 0.05 and 0.01 for the organic matter percentage and the clay content, respectively. Comparison of the means of low and high water seasons revealed that there is no significant relationship between Langmuir coefficients, whereas in Freundlich equation, a significant difference at 0.01 level was observed between kf coefficients. Generally, the obtained results indicated that cadmium adsorption by sediments in low-water season is higher than high-water season. Also, cadmium adsorption by the 5th Ahvaz Bridge sediments due to the sandy texture was less than those adsorbed by both Darkhovin and Khorramshahr sediments.
E. Chavoshi, M. Afyuni , M. Ali. Hajabbasi,
Volume 19, Issue 73 (11-2015)
Abstract

The sorption and desorption of fluoride by soil can play an important role in the transport of fluoride in soil. The study was conducted on the soil from Isfahan University of Technology research station site (two depths of 0-30 and 30- 60 cm). Fluoride sorption reactions were examined by equilibrating 0, 2.5, 5, 10, 25, 50 and 100 mg L-1 NaF solution with soils for 23 hr. The desorption experiments were performed using 0.03 mol L-1 NaCL solutions immediately following the completion of sorption experiments. The sorption isotherms of F were well described by the Langmuir and Freundlich models. The n values for Freundlich isotherm were 0.57 and 0.55 for two depths of the studied soil, respectively. The kF values for Freundlich isotherm were 0.026 and 0.025 mg (1-n) Ln g-1 for two depths, respectively. Maximum monolayer sorption capacities (q max) were obtained to be 0.4 and 0.35 mg g-1 for 1 and 2 layers of the studied soil, respectively. The desorption isotherms of F were well described by the Freundlich model. The fitted model parameters’ (kF and n) values for desorption branches were larger than these values for sorption branches. Also, the results showed a positive hysteresis (ndesrb sorb and kdesorb >Ksorb). It seems fluoride sorption to be reversible.


J. Bayazzadeh, E. Sepehr, H. Momtaz,
Volume 23, Issue 2 (9-2019)
Abstract

To study the behaviour of phosphorus (P) sorption in the agricultural soils of Khoy region and the effect of long-term cultural management with the application of poultry manure on the P sorption parameters, bath experiments were carried out with 16 soil samples (8 cultivated and 8 virgin soils) and 9 initial P concentrations from 0 to 30 mg L-1 in 0.01M CaCl2 as a background solution. After equilibrium, the remaining amount of P in solution was measured and the experimental sorption data were fitted to the Langmuir (R2=0.93-0.99) and Freundlich (R2=0.87-0.99) models. The results showed that P sorption was increased with enhancing the initial P concentration, eventually reaching the steady-state plateau. Based on the coefficient of determination (R2) and the standard error of estimate (SE), both isotherms models, Langmuir and Freundlich, showed a relatively good fit to the experimental data. The maximum mono layer sorption of Langmuir (qmax) varied from 233 to 486 and from 340 to540 mg kg-1, and the energy parameter of Langmuir (KL) ranged from 0.12 to 0.50 and from 0.22 to 0.71 for the cultivated and virgin soils, respectively. Freundlich sorption capacity (KF) and intensity (n) parameters showed the same trends and KF varied from 36.4 to 123 and 59.3 to 145.2; also n varied from 1.18 to 1.50 and 1.47 to 1.71 in the cultivated and virgin soils, respectively. Consequently, all sorption parameters and the buffering indices showed a decreasing trend in the cultivated soils, as compared to the corresponding virgin soils and the cultural and fertilization management; especially, the application of the poultry manure in this region reduced phosphorus sorption by soil and then increased phosphorus availability to plants. Hence, less fertilizer would be needed to maintain a favourable P concentration in the soil solution for the optimum plant growth.

S. Z. Kiani Harcheghani, A. R. Hosseinpur, H. R. Motaghian,
Volume 23, Issue 2 (9-2019)
Abstract

Adsorption is one of the most important processes controlling the concentration of zinc (Zn) in the soil solution. The presence of nutrient anions in the solution can affect Zn2+ adsorption. In this study, the effect of orthophosphate, nitrate and chloride anions on the Zn2+ adsorption in five calcareous soil samples of Chaharmahal-va-Bakhtiari province was investigated. In order to study the Zn adsorption isotherms, solutions containing 25, 50, 75, 100, 150 and 200 mg/L Zn of ZnSO4 source were used in KH2PO4, KNO3 and KCl electrolytes (electrolytes concentration equal to 50 mM). The Freundlich, Langmuir, and linear equations were used to investigate the ability to describe the Zn adsorption. Based on the results, the Freundlich and Langmuir equations could describe the Zn adsorption. The results of this study showed that Zn in the presence of orthophosphate anion had the maximum adsorption capacity and  an adsorption intensity higher than that of chloride and nitrate anions; meanwhile, in comparison with nitrate and orthophosphate anions, adsorption energy (k), maximum buffering capacity (MBC), and distribution coefficient (kf) in the presence of chloride anion were higher (p< 0.05). The results of this study, therefore, showed that in the presence of anion orthophosphate, Zn adsorbed more intensity and strongly, while adsorption energy was  less than the presence of  the other two anions. Therefore, it could be concluded that Zn and phosphate fertilizers should not be applied together in the soil.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb