Search published articles


Showing 3 results for Genotype × Environment Interaction

R. Karimizadeh, H. Dehghani, Z. Dehghanpour,
Volume 10, Issue 3 (10-2006)
Abstract

To facilitate the interpretation of data from a genotype by environment experiment (GE), a cluster method is proposed to group genotypics according to their response to the environments especially when the GE interaction is large. The interaction structure of two-way classification data often can be identified if the data stratified into homogeneous subsets. In this paper four GE interaction cluster methods are proposed for this purpose. The stability of the 10 maize hybrids including 9 hybrids that were the best hybrids in yield trials and KSC 301 (check hybrid) were evaluated for 2 years in 4 locations of Iran. The randomized complete block design with 4 replications was conducted for each environment with different layouts. Simple analysis of variance revealed significant genetic differences between hybrids for grain yield. The results of combined analysis of variance indicated that genotype × year, genotype × location, and genotype × year × location interaction effects were significant (P < 0.01). Results also showed that models 1 and 3 and models 2 and 4 had the same responses. Hybrids 8 (K1263/1 × KE8212/12) with high yield stability in both models 1 and 3 were in one group and other hybrids were in another group. In models 2 and 4 results led to 3 groups: Group1 included hybrids 3, 7 and 9 that were very stable and had high yield group 2 included hybrid 1 alone that had medium stability and yield and group 3 included other hybrids that had low stability and yield.
H. Zali, S.h. Sabaghpour, E. Farshadfar, P. Pezeshkpour, M. Safikhani, R. Sarparast, A. Hashem Beygi,
Volume 11, Issue 42 (1-2008)
Abstract

  Presence of genotype × environment interaction necessitates evaluation of genotypes in a wide range of environments to find desirable genotypes. This study was carried out to determine the stability and adaptability of grain yield of 17 chickpea genotypes, in RCBD with four replications at Kermanshah, Lorestan, Ilam, Gachsaran and Gorgan Research Stations during two seasons (2003-2004). The genotype × environment interaction effect analyzed using the additive main effects and multiplicative interaction (AMMI) statistical model was significant at 1% level of probability. The sum of squares of G × E interaction was partitioned by AMMI model into four significant interaction principal component axes (IPCA). The first four principal component axes (IPCA 1, 2, 3 and 4) cumulatively contributed to 94% of total genotype by environment interaction. A biplot generated using genotypic and environmental scores of the first two AMMI components also showed that genotypes FLIP 97- 79, X95TH1 and FLIP 97- 114 were selected as stable genotypes, among which the genotype FLIP 97- 114 was outstanding for high yield stability.


S Kamli, O Alishah, N Babaian,
Volume 13, Issue 48 (7-2009)
Abstract

To assess adaptability and stability of seed cotton yield in promising cotton genotypes, eight cultivars of cotton (Gukorova, Nazeli–84, Khordad, No: 200, Crema, Tabladila, Beli Izovar and Sepid), along with two controls (Sahel and Varamin), were studied in a completely randomized block design (RCBD) with four replications in six regions of Golestan and Mazandaran provinces in two successive years (2005 & 2006). Combined analysis of variance was done and means comparison of yield was conducted based on Duncan's multiple range test. Sepid, Beli Izovar, Varamin and Khordad varieties were superior for yield, earliness, boll weight and boll number, respectively. The result of combined variance analysis showed that, there are significant differences between genotypes and genotype × environment (G.E) interaction effect. Because of significant G.E interaction effect univariete stability parametric and non-parametric stability methods were used to determine genotype stability. The results of varied methods were different. The 43200 and Sepid cotton cultivars had a specific adaptation and were suitable cultivar for fertile lands in north of country, because of good reaction to production high yield. In contrast, Sahel cultivar with lowest yield had broad stability with non-fertile regions. Overall, three genotypes (Khordad, Tabladila and Gukorova) were determined with suitable stability and moderate yield (general stability) for most locations in north of country.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb