Search published articles


Showing 7 results for Grain Yield.

Y. Emam, A.m. Ranjbar, M. J. Bahrani,
Volume 11, Issue 1 (4-2007)
Abstract

Drought stress is one of the major limiting factors of crop yield. A field experiment was conducted to study the effects of drought stress on yield and yield components of nine bread wheat and one durum wheat genotypes during 2003-2004 growing season. The experiment was designed as two separate randomized complete blocks design with three replicates under well-watered and unwatered conditions during the post-anthesis period. Post-anthesis drought stress reduced the grain yield and yield components in all genotypes. Mean of each trait significantly(p≤%5) decreased under drought stress conditions, except for spikeletes number per spike and ear number per square meter. The highest yield loss was caused by the grain number per ear and 1000- grain weight reduction under drought stress conditions.“Gahar” genotype had the highest grain yield (4149 kg/ha) under drought stress conditions, whereas the highest grain yield (6674 kg/ha) was obtained for “Nikenejad” genotype under optimum conditions. Based on stress susceptibility index, “Koohdasht” and “Boholh-15” genotypes showed the lowest and the highest yield loss in response to drought stress, respectively. Correlation analysis of yield and yield components indicated that, under drought stress conditions, ear number per square meter (r=0.751) and biological yield (r=0.707) had the highest correlation with the grain yield(p≤%5), whereas these traits were grains number per ear(r=0.864) and biological yield (r=0.848) for the well-watered conditions. Therefore, it might be possible to select genotypes for greater grain yield with the means of the traits which have the highest correlation coeficient with the grain yield under each moisture regime. Generally, it appeared that “Gahar”and “Nikenejad” genotypes with greater yield potential might be recommended for agronomic conditions similar to the present investigation.
M.r. Tadayon, Y. Emam,
Volume 11, Issue 42 (1-2008)
Abstract

  Photosynthesis and wheat grain yield responses to supplemental irrigation with different amount of applied water under dryland conditions were investigated. Therefore, a two-year field experiment was conducted research farm of College of Agriculture, Shiraz University during 2004-2005. Five levels of irrigation including dryland conditions, irrigation at stem elongation, booting, flowering and grain filling were main plots and two wheat cultivars: Agosta and Fin-15 were subplots, and three rates of nitrogen including zero, 40 and 80 kgha-1 were sub sub-plots. The results showed that in both years, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate, were significantly higher under irrigation at stem elongation stage compared to other supplemental irrigation treatments. In all of the four supplemental irrigation treatments, photosynthetic rate, stomatal conductance, substomatal CO2 concentration and transpiration rate decreased with decreasing the amount of applied water to each plot. In both years, the highest grain yield was obtained from supplemental irrigation at stem elongation stage, and the lowest yield was harvested at dryland conditions. The highest photosynthetic parameters, yield and yield components were obtained from interaction of supplemental irrigation at stem elongation stage × Fin-15 and 80 kg N ha-1 in both years. The supplemental irrigation in 2004 and 2005 increased the grain yield 200 and 221 percent, respectively, compared to dryland conditions. Thus, supplemental irrigation at sensitive stem elongation stage could affect significantly wheat grain yield of rainfed wheat cultivars and provision of adequate water for a supplemental irrigation at the appropriate growth stage could double the grain yield of rainfed wheat.


E. Farahani , A. Arzani,
Volume 11, Issue 42 (1-2008)
Abstract

  An experiment was conducted to investigate the heterosis in 12 F1 hybrids of durum wheat using agronomic and morphological traits. Parents were selected according to the estimated genetic distances based on the results of a two-year field experiment, which were then crossed to produce F1 hybrids. Twenty-three genotypes (including 11 parents and 12 hybrids) were evaluated using a randomized complete block design with three replications Research Farm of College of Agriculture, Isfahan University of Technology, located at Lavark, Najaf- Abad in 2003. Agronomic characteristics comprised days to 50% flowering, days to 50% pollination, days to maturity, plant height, spike length, grain weight per spike, number of grain per spike, number of spike per m2, 1000-grain weight, biological yield, grain yield and harvest index. The results of analysis of variance showed significant differences among parents F1 hybrids and parents vs. crosses for all the studied traits. Substantial differences in the level of heterosis for plant maturity were detected among the hybrids with the highest heterosis belonging to HPI40100×PI40099 and HEupoda6× Chahba88 hybrids. Furthermore, superior hybrids included HAltar84/Ald×Chahba88, HBuchen7×Chahba88 and HEupoda6×Mexi75/Vic possessing the highest heterosis for grain yield and grain yield components among 12 hybrids of the present experiment. Eventually, it is concluded that Eupoda6, Odin12, Altar84/Ald and 45063Karaj genotypes when crossed with Mexi75/Vic genotype as well as Buchen7 and Altar84/Ald genotypes when crossed with Chahba88 genotype produced superior F1 hybrids.


M. Dehghanian, M. Madandoost,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the effect of zinc - chelate on drought tolerance of Azadi cross wheat, a randomized complete block design was conducted as split plot with three replicates in the Kherameh during 1383 - 1384. The main plot was four drought levels (control and drought stress in the stages of flowering, seed milk stage and two phases, together), and sub plot was zinc - chelate rates 0, 5, 10 & 15 kg per hectare. The results showed that zinc application under drought conditions increased spike per square meter significantly at the 5% level. Drought stress decreased 1000 - seed weight. Least of 1000 - grain weight was in two phases of flowering and seed milk stage together (29.78 g). The application of 15kg zinc -chelate fixed 1000 - seed weight. Treatments of drought stress decreased seed yield significantly (14.17% in the proportion of control), but zinc - chelate application increased wheat tolerance to seed yield decrease. Zinc - chelate application prevented from seed number decrease per wheat spike under drought conditions that was caused to tolerance of seed yield and harvest index decrease. The application of 15 kg zinc - chelate increased harvest index in comparison of control amount of 22%.
A. Moradi, A. Ahmadi , A. Hossein Zadeh,
Volume 12, Issue 45 (10-2008)
Abstract

Drought is a major factor limiting growth and development of crops such as mung bean (Vigna radiate (L.) wilczek) in arid and semi-arid regions of the world. This study was conducted to investigate the effects of different timing and severity of drought stress on physiological traits of mung bean and its relation to grain yield. A field experiment was carried out during 2004 growing season at Experimental Farm of Agriculture College, University of Tehran, Karaj, Iran. The treatments were laid out in a Randomized Complete Block Design (RCBD) with three replications. Plants were exposed to moderate and severe water stresses at either vegetative (VS) or reproductive stages (RS). Physiological traits were measured at the end of vegetative and the middle of pod formation. Generally water stress reduced leaf net photosynthesis rate, stomatal conductance and leaf relative water content at different growth stages. The effects of RS treatments were more severe than that of VS one. Severe VS treatment increased photosynthetic water use efficiency, whereas RS treatments decreased it significantly. However, leaf area index and total dry matter were more responsive in VS compared to RS treatments. VS treatments did not affect harvest index, while RS treatments reduced it significantly. Drought stress also reduced grain yield by 9 and 49 % (relative to control plants) in severe VS and severe RS treatments, respectively. Therefore irrigation is critical during reproductive stage mainly because of the higher demand for photoassimilate. It is concluded that to maximize mung bean grain yield in arid and semi-arid areas, appropriate watering should be practiced across all phenological stages in general, and during reproductive stage in particular.
R. Bagheri, Gh. Akbari, M. H. Kianmehr, Z. Tahmasebie Sarvestani,
Volume 16, Issue 59 (4-2012)
Abstract

To evaluate the effect of nitrogen slowly released from pellet, composed of manure and urea fertilizer on the Nitrogen efficiency and morphological Characteristics and grain yield of corn hybrid (S.C704), a field experiment was carried out in Aboureihan research farm of Tehran University in 2009. The factorial design of the study comprised a randomized complete block with three replications. The application rates of N at four levels (46, 92, 138 and 184 kg N. ha-1) and two levels by methods of N distribution (pellet and mixed with soil) were applied. In this research, a Screw Extruder setup was designed and manufactured. Statistical analysis indicated that NUE, as well as agronomic efficiency (AE) was reduced while physiological efficiency (PE) increased with increasing N rates. Also, most plant length and stem diagonal and cob diagonal pellet belonged to the treatment. But, the number of leaves per plant did not affect the distribution method of fertilizer.The results showed significant differences among various rates of nitrogen and methods of N distribution considering grain yield and grain protein. The higher rates of N increased grain protein, grain yield and yield components (except for number of rows per ear). Maximum grain yield (11.1 t. ha-1) was obtained with 184 kg N. Ha-1 treatment.
M. Rezvani, M. Shafiezadeh,
Volume 19, Issue 71 (6-2015)
Abstract

Nowadays, due to the effective role of nitrogen fertilizer in growth, yield and crop quality, farmers apply large amount of chemical fertilizers. High application of nitrogen fertilizers has caused soil and water pollution and environmental dangers, higher nitrate accumulation in plant, and different disease risks in human and livestock. In order to investigate the effects of nitrogen and cycocel application effects on soil nitrate pollution and agronomic traits of rice, an experiment was arranged in split plot based on a completely randomized block design with three replicates at Sari region (north of Iran) in 2010. The main factor was nitrogen in four levels and cycocel was considered as a sub factor in three levels. Results showed that maximum and minimum plant height and fourth internodes bending moment were obtained in 0 and 150 kg N ha-1, respectively. Higher filled spikelet percentage per panicle, grain yield and harvest index were obtained in 100 kg N ha-1 application. Application of N up to 150 kg N ha-1 increased soil nitrate by 44.7 percent. As cycocel application decreased, the plant height and panicle length were reduced, but tiller number per plant, filled spikelet percentage per panicle, and grain yield were increased.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb