Search published articles


Showing 2 results for Hec-Ras Software

M.a. Mohammadi, H. Ebrahimnezhadian, M. Asgarkhan Maskan, V. Vaziri,
Volume 26, Issue 2 (9-2022)
Abstract

The study of annual damage statistics due to floods in Iran and the world shows the extent of flood damage to natural and human resources in different regions. Determining the flood zone of rivers in order to protect national resources and reduce flood damage provides the possibility of protecting the river from encroachment and the construction of any unauthorized facilities in it. Therefore, in the present study, the capability of numerical models in simulating the flood zone of rivers was evaluated in the range of Azarshahr Qushqura river and the two-dimensional hydraulic model HEC-RAS 5.0.7 and one-dimensional HEC-RAS model were compared. Changes in the hydraulic characteristics of the flood flow including depth and velocity of the flow at different cross sections of the models were evaluated. The results showed that the water surface level (flow depth) of the two-dimensional model HEC-RAS compared to the one-dimensional model had the lowest error as compared to other hydraulic parameters of flood flow. The two-dimensional HEC-RAS model showed the highest error rate in the flow velocity parameter in comparison to the one-dimensional model. The results indicated that two-dimensional HEC-RAS model V5.0.7 determined the surface of the flood zone 12.46 % more than the one-dimensional HEC-RAS model. The confirmation of the resulting zones on the current state of the river and comparison with the river aerial photo of 1346 indicated the higher accuracy of the two-dimensional HEC-RAS model in estimating the flood zone of the river.

M. Amiri, E. Fazel Najafabadi, M. Shayannejad,
Volume 28, Issue 3 (10-2024)
Abstract

One of the important issues in river engineering is flood trends. In general, two types of methods are used to determine the flood trends in rivers. The first group of hydraulic methods, such as the dynamic wave method, is based on solving continuity and momentum equations or Saint-Venant equations. The second category is hydrological methods like the non-linear Muskingum method. In this research, both methods have been used to determine the trends of flood hydrographs in the Plasjan River, one of the main tributaries of the Zayandehrud River. The coefficients of the non-linear Muskingum method were obtained by optimizing and solving the related equation with the fourth-order Runge-Katai numerical method using MATLAB software and the dynamic wave method using the two-dimensional HEC-RAS software. In this study, four flood events were used. In the non-linear Muskingum method, the first event was used for model calibration and the other three events were used for validation. The error rate in this method for the second, third, and fourth events was 84.23, 6.6, and 7.96 percent, respectively, and the error rate in the dynamic wave method for these four events was 17.58, 87.3, 5.4, and 6.21 percent, respectively. Therefore, the dynamic wave method is more accurate in estimating the output hydrograph. However, the non-linear Muskingum method has acceptable accuracy and is recommended in terms of cost, required information, simplicity, and speed of calculation in situations where sufficient information is not available.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb