Search published articles


Showing 2 results for Heterosis

V. Rameeh, A. Rezai, A. Arzani,
Volume 4, Issue 2 (7-2000)
Abstract

Diallel crosses of six breeding inbred lines of corn (Zea mays L.) were used to estimate combining abilities, heterosis and some other genetic parameters for yield and some of its components. Parents, 15 F1 crosses and 4 filler genotypes, were evaluated in a 5×5 simple lattice design. For all the traits studied, except seed length, the efficiency of lattice design was less than one. Therefore, data were analysed as a randomized complete block and after eliminating the filler genotypes, Grriffing’s method 2 with mixed B model was used in the genetic analyses.

General and specific combining ability (GCA and SCA) mean squares were statistically significant for all traits studied. The ratios of GCA to SCA mean squares were greater than one for all traits, except for the number of seed rows per ear, indicating the importance of non-additive gene effects in their genetic control. Low heritability estimates and degrees of dominance lower than one were further evidence of the presence of non additive gene effects for all the traits studied, except for the number of seed rows per ear. Therefore, production of single cross hybrids in order to take advantage of non-additive gene effects is of prime importance for grain yield, number of seeds per ear row, l00-seed weight, seed length, ear length, and comb percentage. For genetic improvement of number of seed rows per ear, selection methods for parental lines will be more efficient. In the hybrids studied, number of seed per ear row and l00-seed weight played a more important role in the observed variations in yield. In general, hybrids 4×5 and 5×6 with high SCA for number of seed per ear row, l00-seed weight and grain yield were considered favorable for the conditions of this study.


E. Farahani , A. Arzani,
Volume 11, Issue 42 (1-2008)
Abstract

  An experiment was conducted to investigate the heterosis in 12 F1 hybrids of durum wheat using agronomic and morphological traits. Parents were selected according to the estimated genetic distances based on the results of a two-year field experiment, which were then crossed to produce F1 hybrids. Twenty-three genotypes (including 11 parents and 12 hybrids) were evaluated using a randomized complete block design with three replications Research Farm of College of Agriculture, Isfahan University of Technology, located at Lavark, Najaf- Abad in 2003. Agronomic characteristics comprised days to 50% flowering, days to 50% pollination, days to maturity, plant height, spike length, grain weight per spike, number of grain per spike, number of spike per m2, 1000-grain weight, biological yield, grain yield and harvest index. The results of analysis of variance showed significant differences among parents F1 hybrids and parents vs. crosses for all the studied traits. Substantial differences in the level of heterosis for plant maturity were detected among the hybrids with the highest heterosis belonging to HPI40100×PI40099 and HEupoda6× Chahba88 hybrids. Furthermore, superior hybrids included HAltar84/Ald×Chahba88, HBuchen7×Chahba88 and HEupoda6×Mexi75/Vic possessing the highest heterosis for grain yield and grain yield components among 12 hybrids of the present experiment. Eventually, it is concluded that Eupoda6, Odin12, Altar84/Ald and 45063Karaj genotypes when crossed with Mexi75/Vic genotype as well as Buchen7 and Altar84/Ald genotypes when crossed with Chahba88 genotype produced superior F1 hybrids.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb