Search published articles


Showing 2 results for Hydraulic Gradient

N. Abbasi, A. A. Afsharian,
Volume 22, Issue 1 (6-2018)
Abstract

Gypsiferous soils are one of the problematic soils which, due to solubility and contact with water, are a threat to various civil structures, especially water structures. Various factors affect the rate and amount of gypsum particles solubility. Gypsum types, the soil texture, the amount of gypsum in soil, the hydraulic gradient, and temperature and flowing water from gypsum soil are the major factors affecting the quality and quantity of the gypsum solution. In this research, the effects of some peripheral conditions including water temperature and hydraulic gradient on the solubility of gypsum soils were studied. To this aim, samples of gypsum soils were provided artificially by adding various rates of the natural gypsum rock including 0, 5, 10, 20 and 30 percent by weight of clay soil. Then, all gypsum soils were leached under five hydraulic gradients levels including 0.5, 1, 2, 5 and 10. The results indicated that the rate of Gypsum in the soil had a direct effect on the rate of solution in a way that by increasing the percent of Gypsum, the rate of solubility was increased. Also, the rate of leaching (the rate of the derived Gypsum from soil to the primary rate of Gypsum) was decreased by increasing the rate of Gypsum. In addition, by increasing hydraulic gradient, the speed of water and its amount in soil environment within a specified time were raised; further the rate of gypsum was increased too. Also, it was found that the rate of the solubility was increased directly by the temperature. The solubility rate of the gypsum soil at 50 C0 was found to be 2.5 and 1.6 times greater than that of the soil at 5 and 20 C0, respectively.

H. Azadbeygi, M. Najarchi, Dr H. Lajevardi,
Volume 27, Issue 4 (12-2023)
Abstract

The present research explores the experimental and numerical investigation of homogeneous earth dams in rapid drawdown conditions. The numerical model was evaluated and calibrated due to the saturation status using the experimental model. The calculated error between the piezometric pressure data and the seepage line in the numerical and experimental model indicated that the results of the Seep/W numerical model data had acceptable accuracy. Also, to determine the thickness of the filter adjusted in the upstream side slope of the homogeneous earth dam in rapid drawdown condition, input data to the numerical model including hydraulic conductivity, rate of the water level drop (depletion of the dam reservoir in three scenarios of 2, 3, and 4 days), the different side slopes of the body (m = 1, 2, and 3), and the thickness of the filter layers were determined. It is worth mentioning that the number of layers and the soil properties of the filter materials were determined based on the USBR which consisted of three types of soil structure (sand, gravel, and gravel with sand). The maximum hydraulic gradient of the dam materials was used to estimate the thickness of the filter layers. Finally, some dimensional fewer numbers were presented to estimate the filter layers by changing the input data through the numerical model to attain the safe conditions for the values of the hydraulic gradient at the upstream side slope. Results of the numerical model indicated that for the construction of the dam with the thickness of the presented filter, the values of the available hydraulic gradient at the point of water exit from the upstream side slope of the body of the earth dam were lower than the critical hydraulic gradient of the earth dam materials in rapid drawdown condition.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb