Search published articles


Showing 2 results for Hydraulic Structure

A. Moradi Sabz Koohi, S. S.m. Kashefipour, M. Bina,
Volume 15, Issue 56 (7-2011)
Abstract

Drops are the most important and common hydraulic structures used as energy dissipators in irrigation networks and erodible waterways. Dissipation of energy occurs in two different ways. One portion belongs to the geometric form of the structure (briefly called loss due to structure), whereas the other occurs due to happening of hydraulic jump downstream of the structure. The dimensions of drop structure and downstream stilling basin can be optimized if geometric and hydraulic characteristics are recognized properly. In this research, the effects of drop geometry and hydraulic characteristics on the loss due to structure were investigated. At first, the effective dimensionless parameters were specified. 14 physical models of more common drops including straight, inclined and stepped drops were then built in 2 heights of 51.5 & 25.5 centimeters and 2 bed slopes of 26.6 & 33.7 degrees. The number of steps in stepped models was chosen equal to 3 and 7. With establishment of 90 flow rate, the energy losses were compared. The results showed that in the range of variable parameters, the straight drop has the maximum amount of energy dissipation.
S. Salehi, Sh. Esmael Zade, Gh. Panahi, K. Esmaili,
Volume 22, Issue 4 (3-2019)
Abstract

The effect of the uplift force in the hydraulics structures is against stability. So, determining and controlling this force can be very important. One of the ways to achieve this purpose is to decrease this force by using the hole drains; in this way, we can build perpendicular pipes with different diameters, leading to the durability of the structure. Therefore, an experimental model of concrete dam was constructed in the hydraulic laboratory. The dam's model was divided into five sections by using 4-hole drains with a thickness equal to the dam's foundation. By running experiments with the maximum water level at the upstream, dam hole drains were opened in their position. Hydraulic potential was estimated by using the Piezometer built in the flume body. Finally, by opening some hole drains, the uplift force was calculated from the equipotential lines. Therefore, the best case (which had the minimum force) was determined, which was a/L=0.4, to create the most proper hole drain in the dam foundation. (a: distance of drain to heel and L: length of the dam's foundation). To place the hole drain in this position, by applying the zero potential in this position, the up lift force was increased


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb