Search published articles


Showing 2 results for Hysteresis

F. Alsadat Hodaee Koskkoee, H. Shariatmadari, M. Hamidrpour, M. Shirvani,
Volume 18, Issue 70 (3-2015)
Abstract

Sorption hysteresis in soil constituents has important environmental implications such as pollutant transport and bioavailability. This research was carried out to study sorption reversibility of cadmium (Cd) on natural zeolite. Sorption isotherms were derived by sorption of Cd (П) from solutions containing different concentrations of Cd in the range of 1 to 10 mg L-1 using a 24h batch equilibration experiment. Desorption of Cd(II) was studied with the clay samples initially treated with the metal loadings of 50 and 100% maximum sorption capacity (SCmax) during the sorption study. Sorption isotherms of Cd were well described by the Freundlich and Coble-Korrigan models (R2=0.96). Desorption isotherms of Cd from zeolite showed little deviation from sorption data indicating reversible sorption. On the other hand, the results revealed no hysteresis. The average amount of 71.75 % of the initially sorbed Cd was desorbed from zeolite after five successive desorption steps. Release of such a relatively high proportion of sorbed Cd indicates that zeolite is an effective sorbent for the repeated purification of polluted water and wastewater.


E. Chavoshi, M. Afyuni , M. Ali. Hajabbasi,
Volume 19, Issue 73 (11-2015)
Abstract

The sorption and desorption of fluoride by soil can play an important role in the transport of fluoride in soil. The study was conducted on the soil from Isfahan University of Technology research station site (two depths of 0-30 and 30- 60 cm). Fluoride sorption reactions were examined by equilibrating 0, 2.5, 5, 10, 25, 50 and 100 mg L-1 NaF solution with soils for 23 hr. The desorption experiments were performed using 0.03 mol L-1 NaCL solutions immediately following the completion of sorption experiments. The sorption isotherms of F were well described by the Langmuir and Freundlich models. The n values for Freundlich isotherm were 0.57 and 0.55 for two depths of the studied soil, respectively. The kF values for Freundlich isotherm were 0.026 and 0.025 mg (1-n) Ln g-1 for two depths, respectively. Maximum monolayer sorption capacities (q max) were obtained to be 0.4 and 0.35 mg g-1 for 1 and 2 layers of the studied soil, respectively. The desorption isotherms of F were well described by the Freundlich model. The fitted model parameters’ (kF and n) values for desorption branches were larger than these values for sorption branches. Also, the results showed a positive hysteresis (ndesrb sorb and kdesorb >Ksorb). It seems fluoride sorption to be reversible.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb