Z. Bigdeli, A. Golchin, T. Mansouri,
Volume 21, Issue 4 (2-2018)
To assess the effects of different levels of soil lead on mineralization of organic carbon and nitrogen, a factorial pot experiment was conducted using litter bag method. The factors examined were different levels of soil lead (0, 25, 50, 100, and 200 mg kg-1soil) and incubation periods (1, 2, 3 and 4 months) in three replications. At the end of incubation periods, the litter bags were pulled out of the pots and the weights of plant residues remained in bags were measured. The plant residues were also analyzed for organic carbon and nitrogen. Organic carbon and nitrogen losses were calculated by subtracting the remaining amounts of organic carbon and nitrogen in one incubation time interval from those of former one later incubation time interval. The results showed that the losses of organic carbon from wheat residues and carbon decomposition rate constant decreased as the levels of soil lead increased over than 25 and 50 mg/kg of soil respectively. The losses of organic nitrogen was more affected by lead pollution and decreased as the levels of soil lead increased, but nitrogen decomposition rate constant decreased as the levels of soil lead increased over than 25 mg/kg. The losses of organic carbon and nitrogen in 200 mg Pb/ kg of soil were 3.2 and 11.7 % lower than control treatment. The results of this research indicate that contamination of soil by lead increases residence time of organic carbon and nitrogen in soils and slows down the cycling of these elements.