Search published articles


Showing 2 results for Inoculant

S. Mashhadi Asghari, N. Aliasgharzadeh,
Volume 8, Issue 4 (1-2005)
Abstract

Peat is the best known and the most widely used rhizobial carrier, but unfortunately, it lacks of sufficient sources in Iran. This research aimed at using some inexpensive materials as carrier instead of peat for producing the rhizobial inoculant for alfalfa. For this purpose, the physical and chemical properties of some materials to be used as carriers were determined and the viability of Sinorhizobium meliloti on these carriers during 6 months at +4 ºC was evaluated. The selected carriers were 1) Peat (control) 2) Vermicompost 3) Bilogical Filter Waste (BFW) 4) Vermiculite+Vermicompost (1:1w/w), and 5) Vermiculite+BFW (1:1w/w). Also to determine the suitable moisture content of carriers on prolongation of bacterial survival, two matric potential levels including –10 and –30 kpa were applied on the carriers. The results showed that vermiculite+BFW (1:1w/w) not only maintained a standard number of bacteria compared to the other treatment, but also caused good nodulation on alfalf seedling at the end of the 6th month. Although BFW carrier maintained a high number of bacteria after six months storage, it can not be recommended as a suitable carrier because of its negative effect on nodulation. In this study, higher number of bacteria was maintained in the matric potential of –30 kpa than –10kpa.
M. Alikhani, A. A. Alamooti, Gh. R. Ghorbani, N. Sadeghi,
Volume 9, Issue 3 (10-2005)
Abstract

Whole plant sunflower and sunflower without head were ensiled in plastic containers using additives in a 2×2×2×2 factorial arrangement in a completely randomized design with three replicates. Additives were molasses, urea (at 4 and 0.5 percent wet basis respectively), and a bacterial inoculant (Agros 6gr/ton of forage as manufacture’s instruction). Compared with silages without head, ensiling sunflower as whole plant resulted in lower pH, neutral detergent fiber (NDF) and ash versus higher concentrations of crude protein and ether extract (EE). No significant effect of seed was observed on lactic acid concentration and dry matter degradability (P<0.05). With the addition of molasses, the cell wall components and the EE concentrations reduced, but dry matter content increased. Highest degradability of dry matter was also observed in molasses-treated silages (average 58.04, P<0.007). With the addition of urea a significant increase was seen in CP content of either whole plant or headless silages (P<0.0001) with no effect on other fermentation characteristics. Bacterial inoculation of silages elevated the levels of lactic acid (2.81% DM) with more pronounced effect on headless than whole plant silages. Regardless of type of additives, butyric acid concentrations were ideally minimal (near to 2%) indicating least clostridial damage. The qualitative visual evaluation of the silage on the basis of scale of 1-20 for the smel, colour and structure of the silage and giving number to the mold damage on the basis of 1-10 placed all the treatment in an acceptable quality, although the mold damage was highest in silages without molasses. Results of this experiment indicated that better quality of silalges could be provided by adding molasses and ensiling whole plant sunflower. Improving quality of silages contained molasses might necesitate the additiion of a source of water-soluble carbohydrate at ensiling.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb